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Graphs
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We call the circles vertices and the lines edges.

Can we describe the sets of vertices and edges for each graph?

1st Graph: The set of vertices is {a}, and the set of edges is {}.
2nd Graph: V = {b,c}, E = {{b,c}}.
3rd Graph: V = {d,e, f}, E = {{e, f},{d, f}}.
4th Graph: V = {g,h, i, j}, E = {{x,y} ∣ x,y ∈V ∧x ≠ y}

Formally, a graph G = (V,E), where V is a set of vertices and E is a set of
edges.
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Bad Thingies 2

Not Graphs!

k l m

No graph (that we will look at) has any loops or multiple edges.



Complete Thingies 3

Definition (Complete Graph)
The complete graph on n vertices is called Kn. We define it as
Kn = ([n],{{x,y} ∣ x,y ∈ [n]∧x ≠ y}). Earlier, we saw K4:

1

2

3

4

Question: How many edges does K6 have?
Answer: Any two vertices can make an edge. So, there are (62) pairs of
vertices. Then, there are (62) = 15 possible edges in K6.



Complete Thingies 3

Definition (Complete Graph)
The complete graph on n vertices is called Kn. We define it as
Kn = ([n],{{x,y} ∣ x,y ∈ [n]∧x ≠ y}). Earlier, we saw K4:

1

2

3

4

Question: How many edges does K6 have?

Answer: Any two vertices can make an edge. So, there are (62) pairs of
vertices. Then, there are (62) = 15 possible edges in K6.



Complete Thingies 3

Definition (Complete Graph)
The complete graph on n vertices is called Kn. We define it as
Kn = ([n],{{x,y} ∣ x,y ∈ [n]∧x ≠ y}). Earlier, we saw K4:

1

2

3

4

Question: How many edges does K6 have?
Answer: Any two vertices can make an edge. So, there are (62) pairs of
vertices. Then, there are (62) = 15 possible edges in K6.



Moving Around Thingies 4

Definition (Path)
Let G be a graph. We say that there is a path between two vertices
u,v ∈V iff there is a list of edges [{u,x1},{x1,x2}, . . . ,{xk,v}] such that no
vertex is hit twice, the first edge contains u, and the last edge contains v.

More intuitively, a path is a continuous line from u to v that doesn’t
repeat vertices. Pictures are helpful:

1

2

3

4 6

5

7

8

The blue edges [{1,2},{2,4},{4,3}] indicate a valid path from 1 to 3.
The red edges [{5,6},{6,8},{8,7},{7,6}] indicate an invalid path from
5 to 6.
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Connected Thingies 5

Definition (Connected Graph)
We say a graph is connected if for every pair of vertices, u,v ∈V , there is
a path from u to v.

Intuitively, if we pick up the graph and shake it around, if anything isn’t
still in the air, then the graph isn’t connected.
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The graph on the left is connected. The graph on the right is not.
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Our First Graphs Proof 6

Prove that Kn is connected for all n ∈N∖{0}. We could try Induction,
but not yet.

Remember, all we have to do is show that for any two vertices u,v ∈V ,
there is a path between them.
Let Kn = (V,E) be a complete graph for some n ∈N∖{0}. We go by cases:

Consider u,v ∈V s.t. u = v. Then, the empty path will suffice.
Consider u,v ∈V s.t. u ≠ v. Then, we know {u,v} ∈ E, because Kn is
a complete graph.

Since these are the only two cases, we’ve shown that Kn is connected for
every n ∈N∖{0}.
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Crayola is the BEST 7

We say a graph G = (V,E) is 2-colorable iff we can use at most two
colors (let’s say red and black) to assign every v ∈V a color where
{u,v} ∈ E Ô⇒ u is a different color from v.

Example (Two Colorability)
Which (if any) of these graphs is 2-colorable?

1

2

3

4 6

5

7

8

The graph on the left is not two-colorable. The graph on the right can be
2-colored by giving 5,7,8 red and 6 black (for example).
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Bipartite Graphs in Two Parts 8

We say a graph G = (V,E) is bipartite iff we can find two sets A,B ⊆V
such that:

V = A∪B

A∩B = ∅

u,v ∈ A∨u,v ∈ B Ô⇒ {u,v} /∈ E

Let G = (V,E) be a graph. Let’s prove G is bipartite iff G is 2-colorable.

Suppose G is 2-colorable. That means that we can assign a coloring
using red and black to all the vertices such that {u,v} ∈ E Ô⇒ u and v
are different colors. Choose such a coloring and call it C. Then, consider
the sets A = {x ∈V ∣C(x) = black} and B = {x ∈V ∣C(x) = red}.

Since every vertex is either assigned black or red, we have the first
condition. No vertex is assigned multiple colors; so, we have the second
condition. To prove the third condition, suppose {u,v} ∈ E. Then, we
know C(u) ≠C(v); so, u and v are not both in A or B. This is precisely
the contrapositive of the third condition.
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Induction on a Graph. . . Impossibru! 9

Let G = (V,E) be an arbitrary graph.
Claim: If for all v ∈V , v is in at least one edge in E, then G is connected.
Proof: We go by induction on n = ∣V ∣.

Base Case. The graph with a single vertex is connected; so, the claim is
true for n = 1.
Induction Hypothesis. Suppose that the claim is true for all graphs
with ∣V ∣ = n for some n ∈N.
Induction Step. Let G′ be a graph with n vertices. Suppose every
vertex is part of at least one edge in G′. Add a new vertex, v, to G′ with
at least one edge.

v

We know that G′ is connected by our IH. Then, since v has an edge to
at least one of the vertices in G′, u, and there is a path from u to every
other vertex in G′ (because G′ is connected), it follows that G′ with v is
a connected graph.

We’ve shown the base case and the implication for all n ∈N; so, the
claim is true! WAIT A SECOND. . . IS IT?
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Uh oh. . . something is wrong! 10

Claim: If for all v ∈V , v is in at least one edge in E, then G is connected.

Consider the following (disconnected) graph:

1

2

3

4 6

5

7

8

It clearly satisfies the property, and yet, it’s disconnected.

Our Induction proof never covered this case, because you can’t get
to it by adding a single vertex at a time!
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Back to Basics 11

We implicitly assumed that the following inductive “definition” worked
for graphs:

Bad Inductive “Definition” for Graphs

1 ({1},{}) is a graph.
2 (V ∪{x},E ∪{{x,a}}) is a graph if (V,E) is a graph where a ∈V .

This definition fails to characterize disconnected graphs! In fact, there is
no reasonable inductive definition of graphs!
This is an explicit indication that no form of structural induction will
work.

So, how can we fix it?
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Enter “Graph Induction” 12

To do induction on a graph G = (V,E). . .

(1) Prove the base case.
(2) Write down your induction hypothesis (“Suppose that the claim is

true for all graphs with k vertices for some k ∈N).
(3) Suppose you are given some graph with k+1 vertices.

(Importantly: This is not a graph where your IH applies yet!)
(4) Find some ”special“ vertex; call it x. (By special, we mean it has

some property that means you know it has to exist)
(5) Remove x and any involved edges
(6) Invoke your IH. (Aha! Removing x gave us a graph with k vertices

where the IH applies!)
(7) Put everything you removed back in the graph
(8) Show that this maintains the property you were concerned about.

The big difference between Graph Induction and what we did before is
that we didn’t assume we could build a larger graph up from smaller
graphs. Instead, we took a larger graph and found a way to invoke our
IH.
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(6) Invoke your IH. (Aha! Removing x gave us a graph with k vertices

where the IH applies!)
(7) Put everything you removed back in the graph
(8) Show that this maintains the property you were concerned about.

The big difference between Graph Induction and what we did before is
that we didn’t assume we could build a larger graph up from smaller
graphs.

Instead, we took a larger graph and found a way to invoke our
IH.
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Gas Stations 13

Suppose that we have a car on a 1 meter circular track with n gas
stations such that the total gas among all n gas stations is 1 gallon
(where we use gas at a rate of 1 gallon per meter).

0.2 gal

0.15 gal

0.04 gal

0.3 gal

0.1 gal

0.01 gal

0.15 gal

0.05 gal

Prove that there is at least one gas station that we can start at with no
gas such that we can make it all the way around the circle.
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Base Case 14

Suppose that we have a car on a 1 meter circular track with n gas
stations such that the total gas among all n gas stations is 1 gallon
(where we use gas at a rate of 1 gallon per meter).
We go by induction on n.

Base Case: When n = 1, we have the following situation:

1 gal

Since there is only one gas station, the entire gallon must be at it; so, we
can make it all the way around.
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Induction Step 15

Induction Hypothesis: Suppose that the claim is true for all possible
tracks with k gas stations.
Induction Step: Suppose we have some track with k+1 gas stations:

x1 gal

x2 gal

xk gal

xk+1 gal

We want to remove some gas station from the track, but which one
should we remove?

The insight here is to find some gas station that will
be useful once we eventually put it back in. How about one that can
get us across the gap?
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Finding x 16

x1 gal

x2 gal

xk gal

xk+1 gal

d1

d2

dk

dk+1

Assume for the sake of contradiction that none of the gas stations had
enough gas to get us to the next gas station. Then, since
d1+d2+⋅ ⋅ ⋅+dk +dk+1 = 1, and xi < di for all i, we know that
x1+x2+⋅ ⋅ ⋅+xk +xk+1 < 1 which is a contradiction! So, there must be a
gas station, call it gas station i, that has enough to cross the gap.
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Killing x 17

So, gas station i has enough to cross the gap!

x1 gal

x2 gal

xk gal

xk+1 gal

xi gal

xi+1 gal

d1

d2

di

di+1

dk

dk+1

Intuitively, if we can get to station i+1 from station i, removing station
i+1 seems like a good idea. So, remove it and edges attached to it.
Question: What do we do with the gas at station i+1?
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Invoking the IH 18

We give it to gas station i! So, once we’ve removed the (i+1)st station,
the track looks like:

x1 gal

x2 gal

xk gal

xk+1 gal

xi+xi+1 gal

di+di+1

d1

d2

dk

dk+1

Since we now have a track with k gas stations, we can invoke the IH!
It follows that with these k stations, there is a station s that can get us
all the way around the track.
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Resurrecting x 19

Now, we add station i+1 back in:

x1 gal

xk gal

xk+1 gal

xi gal

xi+1 gal

S

d1

d2

di

di+1

dk

dk+1

Note that by our IH, we know that we can get from station s to station i.
We also know that we can get from station i to station i+1 with xi gas,
because we proved it earlier. Thus, we can get from s to i, from i to i+1,
and from i+1 back to s. So, station s still works!
Finally, since we showed the base case and the induction step, we know
that the claim is true by induction.
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