CS

Mathematical Foundations of Computing

CS 13: Mathematical Foundations of Computing

Graphs

A Graph is a Thingy. . .

We call the circles vertices and the lines edges.

A Graph is a Thingy. . .

(a)

We call the circles vertices and the lines edges.
Can we describe the sets of vertices and edges for each graph?

A Graph is a Thingy. . .

We call the circles vertices and the lines edges.
Can we describe the sets of vertices and edges for each graph? $1^{\text {st }}$ Graph: The set of vertices is $\{a\}$, and the set of edges is $\}$.

A Graph is a Thingy. . .

We call the circles vertices and the lines edges.
Can we describe the sets of vertices and edges for each graph? $1^{\text {st }}$ Graph: The set of vertices is $\{a\}$, and the set of edges is $\}$. $2^{\text {nd }}$ Graph: $V=\{b, c\}, E=\{\{b, c\}\}$.

A Graph is a Thingy. . .

We call the circles vertices and the lines edges.
Can we describe the sets of vertices and edges for each graph? $1^{\text {st }}$ Graph: The set of vertices is $\{a\}$, and the set of edges is $\}$. $2^{\text {nd }}$ Graph: $V=\{b, c\}, E=\{\{b, c\}\}$.
$3^{\text {rd }}$ Graph: $V=\{d, e, f\}, E=\{\{e, f\},\{d, f\}\}$.

A Graph is a Thingy. . .

We call the circles vertices and the lines edges.
Can we describe the sets of vertices and edges for each graph? $1^{\text {st }}$ Graph: The set of vertices is $\{a\}$, and the set of edges is $\}$. $2^{\text {nd }}$ Graph: $V=\{b, c\}, E=\{\{b, c\}\}$.
$3^{\text {rd }}$ Graph: $V=\{d, e, f\}, E=\{\{e, f\},\{d, f\}\}$.
$4^{\text {th }}$ Graph: $V=\{g, h, i, j\}, E=\{\{x, y\} \mid x, y \in V \wedge x \neq y\}$

A Graph is a Thingy. . .

We call the circles vertices and the lines edges.
Can we describe the sets of vertices and edges for each graph? $1^{\text {st }}$ Graph: The set of vertices is $\{a\}$, and the set of edges is $\}$. $2^{\text {nd }}$ Graph: $V=\{b, c\}, E=\{\{b, c\}\}$.
$3^{\text {rd }}$ Graph: $V=\{d, e, f\}, E=\{\{e, f\},\{d, f\}\}$.
$4^{\text {th }}$ Graph: $V=\{g, h, i, j\}, E=\{\{x, y\} \mid x, y \in V \wedge x \neq y\}$
Formally, a graph $G=(V, E)$, where V is a set of vertices and E is a set of edges.

Bad Thingies

Not Graphs!

No graph (that we will look at) has any loops or multiple edges.

Definition (Complete Graph)

The complete graph on n vertices is called K_{n}. We define it as $K_{n}=([n],\{\{x, y\} \mid x, y \in[n] \wedge x \neq y\})$. Earlier, we saw K_{4} :

Complete Thingies

Definition (Complete Graph)

The complete graph on n vertices is called K_{n}. We define it as $K_{n}=([n],\{\{x, y\} \mid x, y \in[n] \wedge x \neq y\})$. Earlier, we saw K_{4} :

Question: How many edges does K_{6} have?

Definition (Complete Graph)

The complete graph on n vertices is called K_{n}. We define it as $K_{n}=([n],\{\{x, y\} \mid x, y \in[n] \wedge x \neq y\})$. Earlier, we saw K_{4} :

Question: How many edges does K_{6} have?
Answer: Any two vertices can make an edge. So, there are $\binom{6}{2}$ pairs of vertices. Then, there are $\binom{6}{2}=15$ possible edges in K_{6}.

Moving Around Thingies

Definition (Path)
Let G be a graph. We say that there is a path between two vertices $u, v \in V$ iff there is a list of edges $\left[\left\{u, x_{1}\right\},\left\{x_{1}, x_{2}\right\}, \ldots,\left\{x_{k}, v\right\}\right]$ such that no vertex is hit twice, the first edge contains u, and the last edge contains v.

Moving Around Thingies

Definition (Path)

Let G be a graph. We say that there is a path between two vertices $u, v \in V$ iff there is a list of edges $\left[\left\{u, x_{1}\right\},\left\{x_{1}, x_{2}\right\}, \ldots,\left\{x_{k}, v\right\}\right]$ such that no vertex is hit twice, the first edge contains u, and the last edge contains v.

More intuitively, a path is a continuous line from u to v that doesn't repeat vertices. Pictures are helpful:

Moving Around Thingies

Definition (Path)

Let G be a graph. We say that there is a path between two vertices $u, v \in V$ iff there is a list of edges $\left[\left\{u, x_{1}\right\},\left\{x_{1}, x_{2}\right\}, \ldots,\left\{x_{k}, v\right\}\right]$ such that no vertex is hit twice, the first edge contains u, and the last edge contains v.

More intuitively, a path is a continuous line from u to v that doesn't repeat vertices. Pictures are helpful:

The blue edges $[\{1,2\},\{2,4\},\{4,3\}]$ indicate a valid path from 1 to 3 .

Moving Around Thingies

Definition (Path)

Let G be a graph. We say that there is a path between two vertices $u, v \in V$ iff there is a list of edges $\left[\left\{u, x_{1}\right\},\left\{x_{1}, x_{2}\right\}, \ldots,\left\{x_{k}, v\right\}\right]$ such that no vertex is hit twice, the first edge contains u, and the last edge contains v.

More intuitively, a path is a continuous line from u to v that doesn't repeat vertices. Pictures are helpful:

The blue edges $[\{1,2\},\{2,4\},\{4,3\}]$ indicate a valid path from 1 to 3 . The red edges $[\{5,6\},\{6,8\},\{8,7\},\{7,6\}]$ indicate an invalid path from 5 to 6 .

Connected Thingies

Definition (Connected Graph)
We say a graph is connected if for every pair of vertices, $u, v \in V$, there is a path from u to v.

Definition (Connected Graph)

We say a graph is connected if for every pair of vertices, $u, v \in V$, there is a path from u to v.
Intuitively, if we pick up the graph and shake it around, if anything isn't still in the air, then the graph isn't connected.

Definition (Connected Graph)

We say a graph is connected if for every pair of vertices, $u, v \in V$, there is a path from u to v.
Intuitively, if we pick up the graph and shake it around, if anything isn't still in the air, then the graph isn't connected.

7

The graph on the left is connected.

Definition (Connected Graph)

We say a graph is connected if for every pair of vertices, $u, v \in V$, there is a path from u to v.
Intuitively, if we pick up the graph and shake it around, if anything isn't still in the air, then the graph isn't connected.

7

The graph on the left is connected. The graph on the right is not.

Our First Graphs Proof

Prove that K_{n} is connected for all $n \in \mathbb{N} \backslash\{0\}$. We could try Induction, but not yet.

Our First Graphs Proof

Prove that K_{n} is connected for all $n \in \mathbb{N} \backslash\{0\}$. We could try Induction, but not yet.

Remember, all we have to do is show that for any two vertices $u, v \in V$, there is a path between them.

Our First Graphs Proof

Prove that K_{n} is connected for all $n \in \mathbb{N} \backslash\{0\}$. We could try Induction, but not yet.

Remember, all we have to do is show that for any two vertices $u, v \in V$, there is a path between them.
Let $K_{n}=(V, E)$ be a complete graph for some $n \in \mathbb{N} \backslash\{0\}$. We go by cases:

Prove that K_{n} is connected for all $n \in \mathbb{N} \backslash\{0\}$. We could try Induction, but not yet.

Remember, all we have to do is show that for any two vertices $u, v \in V$, there is a path between them.
Let $K_{n}=(V, E)$ be a complete graph for some $n \in \mathbb{N} \backslash\{0\}$. We go by cases:

- Consider $u, v \in V$ s.t. $u=v$. Then, the empty path will suffice.

Prove that K_{n} is connected for all $n \in \mathbb{N} \backslash\{0\}$. We could try Induction, but not yet.

Remember, all we have to do is show that for any two vertices $u, v \in V$, there is a path between them.
Let $K_{n}=(V, E)$ be a complete graph for some $n \in \mathbb{N} \backslash\{0\}$. We go by cases:

- Consider $u, v \in V$ s.t. $u=v$. Then, the empty path will suffice.
\square Consider $u, v \in V$ s.t. $u \neq v$. Then, we know $\{u, v\} \in E$, because K_{n} is a complete graph.

Our First Graphs Proof

Prove that K_{n} is connected for all $n \in \mathbb{N} \backslash\{0\}$. We could try Induction, but not yet.

Remember, all we have to do is show that for any two vertices $u, v \in V$, there is a path between them.
Let $K_{n}=(V, E)$ be a complete graph for some $n \in \mathbb{N} \backslash\{0\}$. We go by cases:

- Consider $u, v \in V$ s.t. $u=v$. Then, the empty path will suffice.

Consider $u, v \in V$ s.t. $u \neq v$. Then, we know $\{u, v\} \in E$, because K_{n} is a complete graph.
Since these are the only two cases, we've shown that K_{n} is connected for every $n \in \mathbb{N} \backslash\{0\}$.

We say a graph $G=(V, E)$ is 2 -colorable iff we can use at most two colors (let's say red and black) to assign every $v \in V$ a color where $\{u, v\} \in E \Longrightarrow u$ is a different color from v.

Crayola is the BEST

We say a graph $G=(V, E)$ is 2 -colorable iff we can use at most two colors (let's say red and black) to assign every $v \in V$ a color where $\{u, v\} \in E \Longrightarrow u$ is a different color from v.

Example (Two Colorability)

Which (if any) of these graphs is 2-colorable?

(7)

Crayola is the BEST

We say a graph $G=(V, E)$ is 2 -colorable iff we can use at most two colors (let's say red and black) to assign every $v \in V$ a color where $\{u, v\} \in E \Longrightarrow u$ is a different color from v.

Example (Two Colorability)

Which (if any) of these graphs is 2-colorable?

(7)

The graph on the left is not two-colorable.

Crayola is the BEST

We say a graph $G=(V, E)$ is 2-colorable iff we can use at most two colors (let's say red and black) to assign every $v \in V$ a color where $\{u, v\} \in E \Longrightarrow u$ is a different color from v.

Example (Two Colorability)

Which (if any) of these graphs is 2-colorable?

(7)

The graph on the left is not two-colorable. The graph on the right can be 2-colored by giving $5,7,8$ red and 6 black (for example).

We say a graph $G=(V, E)$ is bipartite iff we can find two sets $A, B \subseteq V$ such that:

We say a graph $G=(V, E)$ is bipartite iff we can find two sets $A, B \subseteq V$ such that:
$\square=A \cup B$

We say a graph $G=(V, E)$ is bipartite iff we can find two sets $A, B \subseteq V$ such that:
$\square=A \cup B$
$A \cap B=\varnothing$

We say a graph $G=(V, E)$ is bipartite iff we can find two sets $A, B \subseteq V$ such that:
$V=A \cup B$

- $A \cap B=\varnothing$
$u, v \in A \vee u, v \in B \Longrightarrow\{u, v\} \notin E$

We say a graph $G=(V, E)$ is bipartite iff we can find two sets $A, B \subseteq V$ such that:
$\square=A \cup B$

- $A \cap B=\varnothing$
$u, v \in A \vee u, v \in B \Longrightarrow\{u, v\} \notin E$
Let $G=(V, E)$ be a graph. Let's prove G is bipartite iff G is 2-colorable.

We say a graph $G=(V, E)$ is bipartite iff we can find two sets $A, B \subseteq V$ such that:
$\square=A \cup B$
$A \cap B=\varnothing$
$u, v \in A \vee u, v \in B \Longrightarrow\{u, v\} \notin E$
Let $G=(V, E)$ be a graph. Let's prove G is bipartite iff G is 2-colorable.
Suppose G is 2-colorable.

We say a graph $G=(V, E)$ is bipartite iff we can find two sets $A, B \subseteq V$ such that:

- $V=A \cup B$
- $A \cap B=\varnothing$
$u, v \in A \vee u, v \in B \Longrightarrow\{u, v\} \notin E$
Let $G=(V, E)$ be a graph. Let's prove G is bipartite iff G is 2-colorable.
Suppose G is 2-colorable. That means that we can assign a coloring using red and black to all the vertices such that $\{u, v\} \in E \Longrightarrow u$ and v are different colors.

We say a graph $G=(V, E)$ is bipartite iff we can find two sets $A, B \subseteq V$ such that:

- $V=A \cup B$
- $A \cap B=\varnothing$
$u, v \in A \vee u, v \in B \Longrightarrow\{u, v\} \notin E$
Let $G=(V, E)$ be a graph. Let's prove G is bipartite iff G is 2-colorable.
Suppose G is 2-colorable. That means that we can assign a coloring using red and black to all the vertices such that $\{u, v\} \in E \Longrightarrow u$ and v are different colors. Choose such a coloring and call it C.

We say a graph $G=(V, E)$ is bipartite iff we can find two sets $A, B \subseteq V$ such that:

- $V=A \cup B$
- $A \cap B=\varnothing$
$u, v \in A \vee u, v \in B \Longrightarrow\{u, v\} \notin E$
Let $G=(V, E)$ be a graph. Let's prove G is bipartite iff G is 2-colorable.
Suppose G is 2 -colorable. That means that we can assign a coloring using red and black to all the vertices such that $\{u, v\} \in E \Longrightarrow u$ and v are different colors. Choose such a coloring and call it C. Then, consider the sets $A=\{x \in V \mid C(x)=$ black $\}$ and $B=\{x \in V \mid C(x)=$ red $\}$.

We say a graph $G=(V, E)$ is bipartite iff we can find two sets $A, B \subseteq V$ such that:

- $V=A \cup B$
- $A \cap B=\varnothing$
$u, v \in A \vee u, v \in B \Longrightarrow\{u, v\} \notin E$
Let $G=(V, E)$ be a graph. Let's prove G is bipartite iff G is 2-colorable.
Suppose G is 2 -colorable. That means that we can assign a coloring using red and black to all the vertices such that $\{u, v\} \in E \Longrightarrow u$ and v are different colors. Choose such a coloring and call it C. Then, consider the sets $A=\{x \in V \mid C(x)=$ black $\}$ and $B=\{x \in V \mid C(x)=$ red $\}$.

Since every vertex is either assigned black or red, we have the first condition.

We say a graph $G=(V, E)$ is bipartite iff we can find two sets $A, B \subseteq V$ such that:

- $V=A \cup B$
$\square A \cap B=\varnothing$
$u, v \in A \vee u, v \in B \Longrightarrow\{u, v\} \notin E$
Let $G=(V, E)$ be a graph. Let's prove G is bipartite iff G is 2-colorable.
Suppose G is 2 -colorable. That means that we can assign a coloring using red and black to all the vertices such that $\{u, v\} \in E \Longrightarrow u$ and v are different colors. Choose such a coloring and call it C. Then, consider the sets $A=\{x \in V \mid C(x)=$ black $\}$ and $B=\{x \in V \mid C(x)=$ red $\}$.

Since every vertex is either assigned black or red, we have the first condition. No vertex is assigned multiple colors; so, we have the second condition.

Bipartite Graphs in Two Parts

We say a graph $G=(V, E)$ is bipartite iff we can find two sets $A, B \subseteq V$ such that:
$V=A \cup B$
$A \cap B=\varnothing$
$u, v \in A \vee u, v \in B \Longrightarrow\{u, v\} \notin E$
Let $G=(V, E)$ be a graph. Let's prove G is bipartite iff G is 2-colorable.
Suppose G is 2-colorable. That means that we can assign a coloring using red and black to all the vertices such that $\{u, v\} \in E \Longrightarrow u$ and v are different colors. Choose such a coloring and call it C. Then, consider the sets $A=\{x \in V \mid C(x)=$ black $\}$ and $B=\{x \in V \mid C(x)=$ red $\}$.

Since every vertex is either assigned black or red, we have the first condition. No vertex is assigned multiple colors; so, we have the second condition. To prove the third condition, suppose $\{u, v\} \in E$.

Bipartite Graphs in Two Parts

We say a graph $G=(V, E)$ is bipartite iff we can find two sets $A, B \subseteq V$ such that:
$V=A \cup B$
$A \cap B=\varnothing$
$u, v \in A \vee u, v \in B \Longrightarrow\{u, v\} \notin E$
Let $G=(V, E)$ be a graph. Let's prove G is bipartite iff G is 2-colorable.
Suppose G is 2-colorable. That means that we can assign a coloring using red and black to all the vertices such that $\{u, v\} \in E \Longrightarrow u$ and v are different colors. Choose such a coloring and call it C. Then, consider the sets $A=\{x \in V \mid C(x)=$ black $\}$ and $B=\{x \in V \mid C(x)=$ red $\}$.

Since every vertex is either assigned black or red, we have the first condition. No vertex is assigned multiple colors; so, we have the second condition. To prove the third condition, suppose $\{u, v\} \in E$. Then, we know $C(u) \neq C(v)$; so, u and v are not both in A or B.

Bipartite Graphs in Two Parts

We say a graph $G=(V, E)$ is bipartite iff we can find two sets $A, B \subseteq V$ such that:
$V=A \cup B$
$A \cap B=\varnothing$
$\square u, v \in A \vee u, v \in B \Longrightarrow\{u, v\} \notin E$
Let $G=(V, E)$ be a graph. Let's prove G is bipartite iff G is 2-colorable.
Suppose G is 2-colorable. That means that we can assign a coloring using red and black to all the vertices such that $\{u, v\} \in E \Longrightarrow u$ and v are different colors. Choose such a coloring and call it C. Then, consider the sets $A=\{x \in V \mid C(x)=$ black $\}$ and $B=\{x \in V \mid C(x)=$ red $\}$.

Since every vertex is either assigned black or red, we have the first condition. No vertex is assigned multiple colors; so, we have the second condition. To prove the third condition, suppose $\{u, v\} \in E$. Then, we know $C(u) \neq C(v)$; so, u and v are not both in A or B. This is precisely the contrapositive of the third condition.

Induction on a Graph. .. Impossibru!

Let $G=(V, E)$ be an arbitrary graph.
Claim: If for all $v \in V, v$ is in at least one edge in E, then G is connected. Proof: We go by induction on $n=|V|$.

Let $G=(V, E)$ be an arbitrary graph.
Claim: If for all $v \in V, v$ is in at least one edge in E, then G is connected.
Proof: We go by induction on $n=|V|$.
Base Case. The graph with a single vertex is connected; so, the claim is true for $n=1$.

Let $G=(V, E)$ be an arbitrary graph.
Claim: If for all $v \in V, v$ is in at least one edge in E, then G is connected.
Proof: We go by induction on $n=|V|$.
Base Case. The graph with a single vertex is connected; so, the claim is true for $n=1$.
Induction Hypothesis. Suppose that the claim is true for all graphs with $|V|=n$ for some $n \in \mathbb{N}$.

Let $G=(V, E)$ be an arbitrary graph.
Claim: If for all $v \in V, v$ is in at least one edge in E, then G is connected.
Proof: We go by induction on $n=|V|$.
Base Case. The graph with a single vertex is connected; so, the claim is true for $n=1$.
Induction Hypothesis. Suppose that the claim is true for all graphs with $|V|=n$ for some $n \in \mathbb{N}$.
Induction Step. Let G^{\prime} be a graph with n vertices.

Let $G=(V, E)$ be an arbitrary graph.
Claim: If for all $v \in V, v$ is in at least one edge in E, then G is connected.
Proof: We go by induction on $n=|V|$.
Base Case. The graph with a single vertex is connected; so, the claim is true for $n=1$.
Induction Hypothesis. Suppose that the claim is true for all graphs with $|V|=n$ for some $n \in \mathbb{N}$.
Induction Step. Let G^{\prime} be a graph with n vertices. Suppose every vertex is part of at least one edge in G^{\prime}.

Let $G=(V, E)$ be an arbitrary graph.
Claim: If for all $v \in V, v$ is in at least one edge in E, then G is connected.
Proof: We go by induction on $n=|V|$.
Base Case. The graph with a single vertex is connected; so, the claim is true for $n=1$.
Induction Hypothesis. Suppose that the claim is true for all graphs with $|V|=n$ for some $n \in \mathbb{N}$.
Induction Step. Let G^{\prime} be a graph with n vertices. Suppose every vertex is part of at least one edge in G^{\prime}. Add a new vertex, v, to G^{\prime} with at least one edge.

Let $G=(V, E)$ be an arbitrary graph.
Claim: If for all $v \in V, v$ is in at least one edge in E, then G is connected.
Proof: We go by induction on $n=|V|$.
Base Case. The graph with a single vertex is connected; so, the claim is true for $n=1$.
Induction Hypothesis. Suppose that the claim is true for all graphs with $|V|=n$ for some $n \in \mathbb{N}$.
Induction Step. Let G^{\prime} be a graph with n vertices. Suppose every vertex is part of at least one edge in G^{\prime}. Add a new vertex, v, to G^{\prime} with at least one edge.

We know that G^{\prime} is connected by our IH.

Let $G=(V, E)$ be an arbitrary graph.
Claim: If for all $v \in V, v$ is in at least one edge in E, then G is connected.
Proof: We go by induction on $n=|V|$.
Base Case. The graph with a single vertex is connected; so, the claim is true for $n=1$.
Induction Hypothesis. Suppose that the claim is true for all graphs with $|V|=n$ for some $n \in \mathbb{N}$.
Induction Step. Let G^{\prime} be a graph with n vertices. Suppose every vertex is part of at least one edge in G^{\prime}. Add a new vertex, v, to G^{\prime} with at least one edge.

We know that G^{\prime} is connected by our IH . Then, since v has an edge to at least one of the vertices in G^{\prime}, u, and there is a path from u to every other vertex in G^{\prime} (because G^{\prime} is connected),

Let $G=(V, E)$ be an arbitrary graph.
Claim: If for all $v \in V, v$ is in at least one edge in E, then G is connected.
Proof: We go by induction on $n=|V|$.
Base Case. The graph with a single vertex is connected; so, the claim is true for $n=1$.
Induction Hypothesis. Suppose that the claim is true for all graphs with $|V|=n$ for some $n \in \mathbb{N}$.
Induction Step. Let G^{\prime} be a graph with n vertices. Suppose every vertex is part of at least one edge in G^{\prime}. Add a new vertex, v, to G^{\prime} with at least one edge.

We know that G^{\prime} is connected by our IH . Then, since v has an edge to at least one of the vertices in G^{\prime}, u, and there is a path from u to every other vertex in G^{\prime} (because G^{\prime} is connected), it follows that G^{\prime} with v is a connected graph.

Let $G=(V, E)$ be an arbitrary graph.
Claim: If for all $v \in V, v$ is in at least one edge in E, then G is connected.
Proof: We go by induction on $n=|V|$.
Base Case. The graph with a single vertex is connected; so, the claim is true for $n=1$.
Induction Hypothesis. Suppose that the claim is true for all graphs with $|V|=n$ for some $n \in \mathbb{N}$.
Induction Step. Let G^{\prime} be a graph with n vertices. Suppose every vertex is part of at least one edge in G^{\prime}. Add a new vertex, v, to G^{\prime} with at least one edge.

We know that G^{\prime} is connected by our IH . Then, since v has an edge to at least one of the vertices in G^{\prime}, u, and there is a path from u to every other vertex in G^{\prime} (because G^{\prime} is connected), it follows that G^{\prime} with v is a connected graph.
We've shown the base case and the implication for all $n \in \mathbb{N}$; so, the claim is true!

Let $G=(V, E)$ be an arbitrary graph.
Claim: If for all $v \in V, v$ is in at least one edge in E, then G is connected.
Proof: We go by induction on $n=|V|$.
Base Case. The graph with a single vertex is connected; so, the claim is true for $n=1$.
Induction Hypothesis. Suppose that the claim is true for all graphs with $|V|=n$ for some $n \in \mathbb{N}$.
Induction Step. Let G^{\prime} be a graph with n vertices. Suppose every vertex is part of at least one edge in G^{\prime}. Add a new vertex, v, to G^{\prime} with at least one edge.

We know that G^{\prime} is connected by our IH . Then, since v has an edge to at least one of the vertices in G^{\prime}, u, and there is a path from u to every other vertex in G^{\prime} (because G^{\prime} is connected), it follows that G^{\prime} with v is a connected graph.
We've shown the base case and the implication for all $n \in \mathbb{N}$; so, the claim is true! WAIT A SECOND... IS IT?

Uh oh. . . something is wrong!

Claim: If for all $v \in V, v$ is in at least one edge in E, then G is connected.
Consider the following (disconnected) graph:

It clearly satisfies the property, and yet, it's disconnected.

Claim: If for all $v \in V, v$ is in at least one edge in E, then G is connected.
Consider the following (disconnected) graph:

It clearly satisfies the property, and yet, it's disconnected.
Our Induction proof never covered this case, because you can't get to it by adding a single vertex at a time!

Back to Basics

We implicitly assumed that the following inductive "definition" worked for graphs:

Bad Inductive "Definition" for Graphs

Back to Basics

We implicitly assumed that the following inductive "definition" worked for graphs:

Bad Inductive "Definition" for Graphs
$1(\{1\},\{ \})$ is a graph.

Back to Basics

We implicitly assumed that the following inductive "definition" worked for graphs:

Bad Inductive "Definition" for Graphs
$1(\{1\},\{ \})$ is a graph.
2($V \cup\{x\}, E \cup\{\{x, a\}\})$ is a graph if (V, E) is a graph where $a \in V$.

We implicitly assumed that the following inductive "definition" worked for graphs:

Bad Inductive "Definition" for Graphs
$1(\{1\},\{ \})$ is a graph.
2 $(V \cup\{x\}, E \cup\{\{x, a\}\})$ is a graph if (V, E) is a graph where $a \in V$.
This definition fails to characterize disconnected graphs!

We implicitly assumed that the following inductive "definition" worked for graphs:

Bad Inductive "Definition" for Graphs
$1(\{1\},\{ \})$ is a graph.
2 $(V \cup\{x\}, E \cup\{\{x, a\}\})$ is a graph if (V, E) is a graph where $a \in V$.
This definition fails to characterize disconnected graphs! In fact, there is no reasonable inductive definition of graphs!

We implicitly assumed that the following inductive "definition" worked for graphs:

Bad Inductive "Definition" for Graphs
$1(\{1\},\{ \})$ is a graph.
$2(V \cup\{x\}, E \cup\{\{x, a\}\})$ is a graph if (V, E) is a graph where $a \in V$.
This definition fails to characterize disconnected graphs! In fact, there is no reasonable inductive definition of graphs!
This is an explicit indication that no form of structural induction will work.

We implicitly assumed that the following inductive "definition" worked for graphs:

Bad Inductive "Definition" for Graphs
$1(\{1\},\{ \})$ is a graph.
$2(V \cup\{x\}, E \cup\{\{x, a\}\})$ is a graph if (V, E) is a graph where $a \in V$.
This definition fails to characterize disconnected graphs! In fact, there is no reasonable inductive definition of graphs!
This is an explicit indication that no form of structural induction will work.

So, how can we fix it?

Enter "Graph Induction"

To do induction on a graph $G=(V, E) \ldots$

Enter "Graph Induction"

To do induction on a graph $G=(V, E) \ldots$
(1) Prove the base case.

To do induction on a graph $G=(V, E) \ldots$
(1) Prove the base case.
(2) Write down your induction hypothesis ("Suppose that the claim is true for all graphs with k vertices for some $k \in \mathbb{N}$).

Enter "Graph Induction"

To do induction on a graph $G=(V, E) \ldots$
(1) Prove the base case.
(2) Write down your induction hypothesis ("Suppose that the claim is true for all graphs with k vertices for some $k \in \mathbb{N}$).
(3) Suppose you are given some graph with $k+1$ vertices.
(Importantly: This is not a graph where your IH applies yet!)

To do induction on a graph $G=(V, E) \ldots$
(1) Prove the base case.
(2) Write down your induction hypothesis ("Suppose that the claim is true for all graphs with k vertices for some $k \in \mathbb{N}$).
(3) Suppose you are given some graph with $k+1$ vertices.
(Importantly: This is not a graph where your IH applies yet!)
(4) Find some "special" vertex; call it x. (By special, we mean it has some property that means you know it has to exist)

To do induction on a graph $G=(V, E) \ldots$
(1) Prove the base case.
(2) Write down your induction hypothesis ("Suppose that the claim is true for all graphs with k vertices for some $k \in \mathbb{N}$).
(3) Suppose you are given some graph with $k+1$ vertices.
(Importantly: This is not a graph where your IH applies yet!)
(4) Find some "special" vertex; call it x. (By special, we mean it has some property that means you know it has to exist)
(5) Remove x and any involved edges

To do induction on a graph $G=(V, E) \ldots$
(1) Prove the base case.
(2) Write down your induction hypothesis ("Suppose that the claim is true for all graphs with k vertices for some $k \in \mathbb{N}$).
(3) Suppose you are given some graph with $k+1$ vertices.
(Importantly: This is not a graph where your IH applies yet!)
(4) Find some "special" vertex; call it x. (By special, we mean it has some property that means you know it has to exist)
(5) Remove x and any involved edges
(6) Invoke your IH. (Aha! Removing x gave us a graph with k vertices where the IH applies!)

To do induction on a graph $G=(V, E) \ldots$
(1) Prove the base case.
(2) Write down your induction hypothesis ("Suppose that the claim is true for all graphs with k vertices for some $k \in \mathbb{N}$).
(3) Suppose you are given some graph with $k+1$ vertices.
(Importantly: This is not a graph where your IH applies yet!)
(4) Find some "special" vertex; call it x. (By special, we mean it has some property that means you know it has to exist)
(5) Remove x and any involved edges
(6) Invoke your IH. (Aha! Removing x gave us a graph with k vertices where the IH applies!)
[7) Put everything you removed back in the graph

To do induction on a graph $G=(V, E) \ldots$
(1) Prove the base case.
(2) Write down your induction hypothesis ("Suppose that the claim is true for all graphs with k vertices for some $k \in \mathbb{N}$).
(3) Suppose you are given some graph with $k+1$ vertices.
(Importantly: This is not a graph where your IH applies yet!)
(4) Find some "special" vertex; call it x. (By special, we mean it has some property that means you know it has to exist)
(5) Remove x and any involved edges
(6) Invoke your IH. (Aha! Removing x gave us a graph with k vertices where the IH applies!)
[7] Put everything you removed back in the graph
[8] Show that this maintains the property you were concerned about.

To do induction on a graph $G=(V, E) \ldots$
(1) Prove the base case.
(2) Write down your induction hypothesis ("Suppose that the claim is true for all graphs with k vertices for some $k \in \mathbb{N}$).
(3) Suppose you are given some graph with $k+1$ vertices.
(Importantly: This is not a graph where your IH applies yet!)
(4) Find some "special" vertex; call it x. (By special, we mean it has some property that means you know it has to exist)
(5) Remove x and any involved edges
(6) Invoke your IH. (Aha! Removing x gave us a graph with k vertices where the IH applies!)
[7] Put everything you removed back in the graph
[8) Show that this maintains the property you were concerned about.
The big difference between Graph Induction and what we did before is that we didn't assume we could build a larger graph up from smaller graphs.

To do induction on a graph $G=(V, E) \ldots$
(1) Prove the base case.
(2) Write down your induction hypothesis ("Suppose that the claim is true for all graphs with k vertices for some $k \in \mathbb{N}$).
(3) Suppose you are given some graph with $k+1$ vertices.
(Importantly: This is not a graph where your IH applies yet!)
(4) Find some "special" vertex; call it x. (By special, we mean it has some property that means you know it has to exist)
(5) Remove x and any involved edges
(6) Invoke your IH. (Aha! Removing x gave us a graph with k vertices where the IH applies!)
(7) Put everything you removed back in the graph
[8) Show that this maintains the property you were concerned about.
The big difference between Graph Induction and what we did before is that we didn't assume we could build a larger graph up from smaller graphs. Instead, we took a larger graph and found a way to invoke our IH.

Gas Stations

Suppose that we have a car on a 1 meter circular track with n gas stations such that the total gas among all n gas stations is 1 gallon (where we use gas at a rate of 1 gallon per meter).

Suppose that we have a car on a 1 meter circular track with n gas stations such that the total gas among all n gas stations is 1 gallon (where we use gas at a rate of 1 gallon per meter).

Prove that there is at least one gas station that we can start at with no gas such that we can make it all the way around the circle.

Suppose that we have a car on a 1 meter circular track with n gas stations such that the total gas among all n gas stations is 1 gallon (where we use gas at a rate of 1 gallon per meter). We go by induction on n.

Suppose that we have a car on a 1 meter circular track with n gas stations such that the total gas among all n gas stations is 1 gallon (where we use gas at a rate of 1 gallon per meter).
We go by induction on n.
Base Case: When $n=1$, we have the following situation:

Suppose that we have a car on a 1 meter circular track with n gas stations such that the total gas among all n gas stations is 1 gallon (where we use gas at a rate of 1 gallon per meter).
We go by induction on n.
Base Case: When $n=1$, we have the following situation:

Since there is only one gas station, the entire gallon must be at it; so, we can make it all the way around.

Induction Hypothesis: Suppose that the claim is true for all possible tracks with k gas stations.
Induction Step: Suppose we have some track with $k+1$ gas stations:

We want to remove some gas station from the track, but which one should we remove?

Induction Hypothesis: Suppose that the claim is true for all possible tracks with k gas stations.
Induction Step: Suppose we have some track with $k+1$ gas stations:

We want to remove some gas station from the track, but which one should we remove? The insight here is to find some gas station that will be useful once we eventually put it back in.

Induction Hypothesis: Suppose that the claim is true for all possible tracks with k gas stations.
Induction Step: Suppose we have some track with $k+1$ gas stations:

We want to remove some gas station from the track, but which one should we remove? The insight here is to find some gas station that will be useful once we eventually put it back in. How about one that can get us across the gap?

Finding x

Assume for the sake of contradiction that none of the gas stations had enough gas to get us to the next gas station.

Assume for the sake of contradiction that none of the gas stations had enough gas to get us to the next gas station. Then, since $d_{1}+d_{2}+\cdots+d_{k}+d_{k+1}=1$, and $x_{i}<d_{i}$ for all i, we know that $x_{1}+x_{2}+\cdots+x_{k}+x_{k+1}<1$ which is a contradiction!

Assume for the sake of contradiction that none of the gas stations had enough gas to get us to the next gas station. Then, since $d_{1}+d_{2}+\cdots+d_{k}+d_{k+1}=1$, and $x_{i}<d_{i}$ for all i, we know that $x_{1}+x_{2}+\cdots+x_{k}+x_{k+1}<1$ which is a contradiction! So, there must be a gas station, call it gas station i, that has enough to cross the gap.
Killing x

So, gas station i has enough to cross the gap!

So, gas station i has enough to cross the gap!

Intuitively, if we can get to station $i+1$ from station i, removing station $i+1$ seems like a good idea.

So, gas station i has enough to cross the gap!

Intuitively, if we can get to station $i+1$ from station i, removing station $i+1$ seems like a good idea. So, remove it and edges attached to it.

So, gas station i has enough to cross the gap!

Intuitively, if we can get to station $i+1$ from station i, removing station $i+1$ seems like a good idea. So, remove it and edges attached to it.
Question: What do we do with the gas at station $i+1$?

Invoking the IH

We give it to gas station i ! So, once we've removed the $(i+1)$ st station, the track looks like:

We give it to gas station i ! So, once we've removed the $(i+1)$ st station, the track looks like:

Since we now have a track with k gas stations, we can invoke the IH!

We give it to gas station i ! So, once we've removed the $(i+1)$ st station, the track looks like:

Since we now have a track with k gas stations, we can invoke the IH! It follows that with these k stations, there is a station s that can get us all the way around the track.

Now, we add station $i+1$ back in:

Now, we add station $i+1$ back in:

Note that by our IH, we know that we can get from station s to station i.

Now, we add station $i+1$ back in:

Note that by our IH, we know that we can get from station s to station i. We also know that we can get from station i to station $i+1$ with x_{i} gas, because we proved it earlier.

Now, we add station $i+1$ back in:

Note that by our IH, we know that we can get from station s to station i. We also know that we can get from station i to station $i+1$ with x_{i} gas, because we proved it earlier. Thus, we can get from s to i, from i to $i+1$, and from $i+1$ back to s. So, station s still works!

Now, we add station $i+1$ back in:

Note that by our IH, we know that we can get from station s to station i. We also know that we can get from station i to station $i+1$ with x_{i} gas, because we proved it earlier. Thus, we can get from s to i, from i to $i+1$, and from $i+1$ back to s. So, station s still works!
Finally, since we showed the base case and the induction step, we know that the claim is true by induction.

