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Random Variables 1

This is a variable:
1 variable = 17

This is a random variable:
1 random_variable = RollDie(6)

These are also random variables:
1 r_var_1 = RollDie(2)
2 r_var_2 = RollDie(3)
3 r_var_3 = r_var_1 + r_var_2

Let Ω be the sample space of an experiment.
Formally, we can view a random variable X as a function from Ω to N.
Looking at the examples above: r_var_1 ∶ [2]→ [2]
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Random Variables 2

1 r_var_1 = RollDie(2)
2 r_var_2 = RollDie(3)
3 r_var_3 = r_var_1 + r_var_2

We often want to talk about the probability mass function of a random
variable:

Pr(r_var_1 = x) = 1
2

(for x ∈ [2])

Pr(r_var_2 = x) = 1
3

(for x ∈ [3])

Pr(r_var_3 = x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1/6 if x = 2
2/6 if x = 3
2/6 if x = 4
1/6 if x = 5

So, to recap, a random variable is a variable in a program that depends
on a random process. For our purposes, we will assume they always take
on natural number values.
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Grading Policies: PVA 321 3

PVA 321 has the following grading policy:
The final exam is worth 100% of the grade.

Suppose that we know the following facts:
No student will ever get below 20.
Students are equally likely to get any score between 20 and 100.

What is the average grade in PVA 321?

We know scores between 20 and 100 are equally likely; so, let’s say they
each show up k times.

Now, just using the definition of average, we get

20k+21k+⋯+100k
81k

= 1
81
(

100

∑
i=20

i)
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Grading Policies: PVA 322 4

PVA 322 has the same grading policy:
The final exam is worth 100% of the grade.

But the distribution of scores is different:
No student will ever get below 20.
20% of the students got a 100.
30% of the students got an 80.
The remaining 50% of the students got scores evenly distributed
between 81,82, . . . ,99.

Same Question: What is the average score in the class? Say there are
n students total. Then, 0.2n of the students got a 100, 0.3n of the
students got an 80, and for each score between 81 and 99, 0.5n

19 students
got that score. So, taking the average gives us:

100(0.2n)+80(0.3n)+
99

∑
i=81

i
0.5n
19

n
= (100)(0.2)+(80)(0.3)+

99

∑
i=81

i
0.5
19

What does this have to do with probability? Let’s rephrase everything!
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Grading Policies: PVA 322 5

No student will ever get below 20.
20% of the students got a 100.
30% of the students got an 80.
The remaining 50% of the students got scores evenly distributed
between 81,82, . . . ,99.

Same Question: What is the average score in the class? Let X be the
r.v. for a student’s score in PVA 322.

Then, the p.m.f. of X is:

Pr(X = i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0.3 if i = 80
0.5 1

19 if 81 ≤ i ≤ 99
0.2 if i = 100
0 otherwise

To get the average, we just multiply each outcome by how likely it is:
100

∑
i=0

iPr(X = i) = 100Pr(X = 100)+80Pr(X = 80)+
99

∑
i=81

iPr(X = i)

= (100)(0.2)+(80)(0.3)+
99

∑
i=81

i
0.5
19
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A Little More Formal Now. . . 6

Definition (Random Variable)

A random variable is a variable in a randomized piece of code or
A random variable is a function from the sample space to the naturals.

Definition (Expected Value)
The expected value of a random variable X ∶Ω→N is the average value
it takes on. As we figured out above, we can calculate it with:

E[X] =∑
x∈Ω

X(x)Pr(X = x) =
∞

∑
n=0

nPr(X = n)
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The Expected Example 7

Let X be the r.v. for the number of heads when we flip 2 coins with bias
p. What is E[X]?

Proof.

By definition of expected value, we know E[X] =
∞

∑
k=0

kPr(X = k).

We know that if 0 ≤ k ≤ n, then

Pr(X = k) = (n
k
)pk(1− p)n−k

So,
E[X] = 0(2

0
)p0(1− p)2−0+1(2

1
)p1(1− p)2−1+2(2

2
)p2(1− p)2−2

= 2p(1− p)+2p2

= 2p
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Check Up! 8

Consider the following expectations:
E[1313]
E[getting HEADS on a coin flip]
E[number of HEADS from a coin flip given that the flip is HEADS]

What are they?

If 1313 is a r.v., then it must be the one that is always 1313. So,
E[1313] = 1313.
THIS DOESN’T MAKE SENSE! We can only take the expectation
of a r.v.–not an event!
It’s 1, because we’re told the coin flip is HEADS
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More Grading Policies 9

PVA 323 has the following grading policy:
The midterm is worth 20% of the grade.
The homework is worth 30% of the grade.
The final exam is worth 50% of the grade.

Stupid Question: Supposing that m was the average on the midterm, h
was the average on the homework, and f was the average on the final
exam, how do you calculate the average for the course?
Answer: 0.2m+0.3h+0.5 f .

Remember our interpretation of these exams as random variables? What
we’re actually saying here is if G is the r.v. for a PVA 323 student’s
course grade, and M, H, and F are the obvious r.v.’s, then:

We know that G = 0.2M+0.3H +0.5F ; so, we can conclude

E[G] = 0.2E[M]+0.3E[H]+0.5E[F]

This is incredibly powerful! To calculate the course average, we just
added together other averages.
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Linearity of Expectation 10

Definition (Linearity of Expectation)
If X , Y , and Z are r.v.’s such that Z = X +Y , then:

E[Z] =E[X]+E[Y ]

Generalizing a little, if we have X =
n

∑
i=1

Xi, then

E[X] =
n

∑
i=1

E[Xi]

Definition (Indicator Random Variable)
An indicator random variable “indicates” whether a particular event E
happens or not. Usually, we define them via:

X =
⎧⎪⎪⎨⎪⎪⎩

1 if BLAH happens
0 otherwise

They come up with Linearity of Expectation a lot!
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Linearity of Expectation 11

There are n people at a party who have checked their hats in. At the end
of the party, the hat-check clerk randomly gives them their hats back.
What is the expected number of people who got their hat back?

Let X be the r.v. for the number of people who get their hat back. By

definition, E[X] =
n

∑
i=0

iPr(X = i). So, now we calculate Pr(X = i).

Pr(X = i) = (ni)
1
n

1
n−1⋯

1
n−i Pr(none of the others get their hats back)).

I don’t want to do this any more. . . make it easier?

Let X be the r.v. for the number of people who get their hat back.
Let Xi be the i.r.v. for the ith person getting his hat back.

Note that X =
n

∑
i=1

Xi, because each of the n people either get their hat

back or not. Now, consider
E[Xi] = 0Pr(Xi = 0)+1Pr(Xi = 1) = Pr(Xi = 1) = 1

n
.

So, E[X] =
n

∑
i=1

E[Xi] =
n

∑
i=1

1/n = 1 by Linearity of Expectation.
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Lots of Coins Again 12

What is the expected number of HEADS from flipping a coin (with bias p)
n times?

Let X be r.v. for the number of HEADS from flipping a coin
(with bias p) n times.

We know Pr(X = k) = (n
k
)pk(1− p)n−k. Putting this into our formula gives:

E[X] =
n

∑
i=0

i(n
k
)pi(1− p)n−i. Any ideas on how to simplify this mess?

Linearity of Expectation to the rescue!

Let Xi be the i.r.v. for the ith coin coming up HEADS. We know

E[Xi] = Pr(Xi = 1) = p. So, since X =
n

∑
i=1

Xi, we know, by Linearity of

Expectation, that E[X] =
n

∑
i=1

E[Xi] =
n

∑
i=1

p = np.
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Law of Total Probability 13

Remember from last time, we mentioned that if A1,A2, . . . ,An are disjoint
events, then

Pr(A1∪A2∪⋅ ⋅ ⋅∪An) =
n

∑
i=1

Pr(Ai)

Let A and B be events. Note that A∩B and A∩B are disjoint. So,
Pr(A) = Pr((A∩B)∪(A∩B)) = Pr(A∩B)+Pr(A∩B).
Using the definition of conditional probability, it follows that:

Definition (Law of Total Probability)

Pr(A) = Pr(A ∣ B)Pr(B)+Pr(A ∣ B)Pr(B)

This can be very useful when calculating probabilities. It has an analog
for expectation: Let X be a r.v.

Definition (Law of Total Expectation)

E[X] =E[X ∣ A]Pr(A)+E[X ∣ A]Pr(A)
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Back to Last Lecture 14

1 X = 1
2 while FlipCoin(p) != HEADS:
3 X++

Let X be the r.v. for how many loop iterations the code gets through.

Let H be the event that the next coin flip comes up HEADS.
E[X] =E[X ∣H]Pr(H)+E[X ∣H]Pr(H) [Law of Total Expectation]

=E[X ∣H] p+E[X ∣H](1− p) [The coin has bias p]
= p+E[X ∣H](1− p) [If we get HEADS, we’re done!]
= p+E[X +1](1− p) [⋆]
= p+E[X](1− p)+E[1](1− p) [Linearity of Expectation]
= 1+(1− p)E[X] [Simplifying]

= 1
p

[Solve for E[X]]
⋆ – Since we know we got TAILS once, we’ve flipped 1 coin. But ignoring
that flip, we’re at the same place we started at! So, E[X ∣H] =E[X +1].
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