Lecture 17

Mathematical Foundations of Computing

CS 13: Mathematical Foundations of Computing

Expectation

1 variable = 17

1 variable = 17

This is a random variable:

1 random_variable = RollDie(6)

1 variable = 17

This is a random variable:

1 random_variable = RollDie(6)

These are also random variables:

```
1 r_var_1 = RollDie(2)
2 r_var_2 = RollDie(3)
3 r_var_3 = r_var_1 + r_var_2
```

1 variable = 17

This is a random variable:

1 random_variable = RollDie(6)

These are also random variables:

```
1 r_var_1 = RollDie(2)
```

- 2 r_var_2 = RollDie(3)
- $3 r_var_3 = r_var_1 + r_var_2$

Let Ω be the sample space of an experiment.

1 variable = 17

This is a random variable:

1 random_variable = RollDie(6)

These are also random variables:

```
1 r_var_1 = RollDie(2)
```

- 2 r_var_2 = RollDie(3)
- $3 r_var_3 = r_var_1 + r_var_2$

Let Ω be the sample space of an experiment. Formally, we can view a random variable X as a function from Ω to \mathbb{N} .

1 variable = 17

This is a random variable:

1 random_variable = RollDie(6)

These are also random variables:

```
1 r_var_1 = RollDie(2)
```

- 2 r_var_2 = RollDie(3)
- $3 r_var_3 = r_var_1 + r_var_2$

Let Ω be the sample space of an experiment. Formally, we can view a random variable X as a function from Ω to \mathbb{N} . Looking at the examples above: $r_var_1:[2] \rightarrow [2]$

- 1 r_var_1 = RollDie(2)
- 2 r_var_2 = RollDie(3)
- $3 r_var_3 = r_var_1 + r_var_2$

- 1 r_var_1 = RollDie(2)
- 2 r_var_2 = RollDie(3)
- $3 r_var_3 = r_var_1 + r_var_2$

$$\Pr(\texttt{r_var_1} = x) = \frac{1}{2} \text{ (for } x \in [2])$$

- 1 r_var_1 = RollDie(2)
- 2 r_var_2 = RollDie(3)
- $3 r_var_3 = r_var_1 + r_var_2$

$$Pr(r_var_1 = x) = \frac{1}{2} \text{ (for } x \in [2])$$
$$Pr(r_var_2 = x) = \frac{1}{3} \text{ (for } x \in [3])$$

- 1 r_var_1 = RollDie(2)
- 2 r_var_2 = RollDie(3)
- $3 r_var_3 = r_var_1 + r_var_2$

$$\Pr(\mathbf{r}_var_1 = x) = \frac{1}{2} \text{ (for } x \in [2])$$

$$\Pr(\mathbf{r}_var_2 = x) = \frac{1}{3} \text{ (for } x \in [3])$$

$$\Pr(\mathbf{r}_var_3 = x) = \begin{cases} 1/6 & \text{if } x = 2\\ 2/6 & \text{if } x = 3\\ 2/6 & \text{if } x = 4\\ 1/6 & \text{if } x = 5 \end{cases}$$

- 1 r_var_1 = RollDie(2)
- 2 r_var_2 = RollDie(3)
- $3 r_var_3 = r_var_1 + r_var_2$

$$Pr(r_var_1 = x) = \frac{1}{2} \text{ (for } x \in [2])$$

$$Pr(r_var_2 = x) = \frac{1}{3} \text{ (for } x \in [3])$$

$$Pr(r_var_3 = x) = \begin{cases} 1/6 & \text{if } x = 2\\ 2/6 & \text{if } x = 3\\ 2/6 & \text{if } x = 4\\ 1/6 & \text{if } x = 5 \end{cases}$$

So, to recap, a random variable is a variable in a program that depends on a random process.

- 1 r_var_1 = RollDie(2)
- 2 r_var_2 = RollDie(3)
- $3 r_var_3 = r_var_1 + r_var_2$

$$\Pr(\mathbf{r}_var_1 = x) = \frac{1}{2} \text{ (for } x \in [2])$$

$$\Pr(\mathbf{r}_var_2 = x) = \frac{1}{3} \text{ (for } x \in [3])$$

$$\Pr(\mathbf{r}_var_3 = x) = \begin{cases} 1/6 & \text{if } x = 2\\ 2/6 & \text{if } x = 3\\ 2/6 & \text{if } x = 4\\ 1/6 & \text{if } x = 5 \end{cases}$$

So, to recap, a random variable is a variable in a program that depends on a random process. For our purposes, we will assume they always take on **natural number** values.

PVA 321 has the following grading policy:

The final exam is worth 100% of the grade.

PVA 321 has the following grading policy:

The final exam is worth 100% of the grade.

Suppose that we know the following facts:

PVA 321 has the following grading policy:

The final exam is worth 100% of the grade.

Suppose that we know the following facts:

No student will ever get below 20.

PVA 321 has the following grading policy:

The final exam is worth 100% of the grade.

Suppose that we know the following facts:

- No student will ever get below 20.
- Students are equally likely to get any score between 20 and 100.

PVA 321 has the following grading policy:

The final exam is worth 100% of the grade.

Suppose that we know the following facts:

- No student will ever get below 20.
- Students are equally likely to get any score between 20 and 100.

What is the average grade in PVA 321?

PVA 321 has the following grading policy:

The final exam is worth 100% of the grade.

Suppose that we know the following facts:

- No student will ever get below 20.
- Students are equally likely to get any score between 20 and 100.

What is the average grade in PVA 321?

We know scores between 20 and 100 are equally likely; so, let's say they each show up k times.

PVA 321 has the following grading policy:

The final exam is worth 100% of the grade.

Suppose that we know the following facts:

- No student will ever get below 20.
- Students are equally likely to get any score between 20 and 100.

What is the average grade in PVA 321?

We know scores between 20 and 100 are equally likely; so, let's say they each show up k times.

Now, just using the definition of average, we get

$$\frac{20k + 21k + \dots + 100k}{81k} = \frac{1}{81} \left(\sum_{i=20}^{100} i \right)$$

PVA 322 has the same grading policy:

The final exam is worth 100% of the grade.

PVA 322 has the same grading policy:

The final exam is worth 100% of the grade.

PVA 322 has the same grading policy:

The final exam is worth 100% of the grade.

But the distribution of scores is different:

No student will ever get below 20.

PVA 322 has the same grading policy:

The final exam is worth 100% of the grade.

- No student will ever get below 20.
- 20% of the students got a 100.

PVA 322 has the same grading policy:

The final exam is worth 100% of the grade.

- No student will ever get below 20.
- 20% of the students got a 100.
- 30% of the students got an 80.

The final exam is worth 100% of the grade.

- No student will ever get below 20.
- 20% of the students got a 100.
- 30% of the students got an 80.
- The remaining 50% of the students got scores evenly distributed between 81,82,...,99.

The final exam is worth 100% of the grade.

But the distribution of scores is different:

- No student will ever get below 20.
- 20% of the students got a 100.
- \blacksquare 30% of the students got an 80.
- The remaining 50% of the students got scores evenly distributed between 81,82,...,99.

Same Question: What is the average score in the class?

The final exam is worth 100% of the grade.

But the distribution of scores is different:

- No student will ever get below 20.
- 20% of the students got a 100.
- 30% of the students got an 80.
- The remaining 50% of the students got scores evenly distributed between 81,82,...,99.

Same Question: What is the average score in the class? Say there are *n* students total.

The final exam is worth 100% of the grade.

But the distribution of scores is different:

- No student will ever get below 20.
- 20% of the students got a 100.
- 30% of the students got an 80.
- The remaining 50% of the students got scores evenly distributed between 81,82,...,99.

Same Question: What is the average score in the class? Say there are *n* students total. Then, 0.2n of the students got a 100, 0.3n of the students got an 80, and for each score between 81 and 99, $\frac{0.5n}{19}$ students got that score.

The final exam is worth 100% of the grade.

But the distribution of scores is different:

- No student will ever get below 20.
- 20% of the students got a 100.
- 30% of the students got an 80.
- The remaining 50% of the students got scores evenly distributed between 81,82,...,99.

Same Question: What is the average score in the class? Say there are *n* students total. Then, 0.2*n* of the students got a 100, 0.3*n* of the students got an 80, and for each score between 81 and 99, $\frac{0.5n}{19}$ students got that score. So, taking the average gives us:

The final exam is worth 100% of the grade.

But the distribution of scores is different:

- No student will ever get below 20.
- 20% of the students got a 100.
- = 30% of the students got an 80.
- The remaining 50% of the students got scores evenly distributed between 81,82,...,99.

Same Question: What is the average score in the class? Say there are *n* students total. Then, 0.2*n* of the students got a 100, 0.3*n* of the students got an 80, and for each score between 81 and 99, $\frac{0.5n}{19}$ students got that score. So, taking the average gives us:

$$\frac{100(0.2n) + 80(0.3n) + \sum_{i=81}^{99} i\frac{0.5n}{19}}{n} = (100)(0.2) + (80)(0.3) + \sum_{i=81}^{99} i\frac{0.5}{19}$$

The final exam is worth 100% of the grade.

But the distribution of scores is different:

- No student will ever get below 20.
- 20% of the students got a 100.
- \equiv 30% of the students got an 80.
- The remaining 50% of the students got scores evenly distributed between 81,82,...,99.

Same Question: What is the average score in the class? Say there are *n* students total. Then, 0.2n of the students got a 100, 0.3n of the students got an 80, and for each score between 81 and 99, $\frac{0.5n}{19}$ students got that score. So, taking the average gives us:

$$\frac{100(0.2n) + 80(0.3n) + \sum_{i=81}^{99} i\frac{0.5n}{19}}{n} = (100)(0.2) + (80)(0.3) + \sum_{i=81}^{99} i\frac{0.5}{19}$$

What does this have to do with probability? Let's rephrase everything!

- No student will ever get below 20.
- 20% of the students got a 100.
- 30% of the students got an 80.
- The remaining 50% of the students got scores evenly distributed between 81,82,...,99.

Same Question: What is the average score in the class? Let X be the r.v. for a student's score in PVA 322.

- No student will ever get below 20.
- 20% of the students got a 100.
- 30% of the students got an 80.
- The remaining 50% of the students got scores evenly distributed between 81,82,...,99.

Same Question: What is the average score in the class? Let X be the r.v. for a student's score in PVA 322. Then, the p.m.f. of X is:

- No student will ever get below 20.
- 20% of the students got a 100.
- 30% of the students got an 80.
- The remaining 50% of the students got scores evenly distributed between 81,82,...,99.

Same Question: What is the average score in the class? Let X be the r.v. for a student's score in PVA 322. Then, the p.m.f. of X is:

$$\Pr(X = i) = \begin{cases} 0.3 & \text{if } i = 80\\ 0.5\frac{1}{19} & \text{if } 81 \le i \le 99\\ 0.2 & \text{if } i = 100\\ 0 & \text{otherwise} \end{cases}$$
Grading Policies: PVA 322

- No student will ever get below 20.
- 20% of the students got a 100.
- 30% of the students got an 80.
- The remaining 50% of the students got scores evenly distributed between 81,82,...,99.

Same Question: What is the average score in the class? Let X be the r.v. for a student's score in PVA 322. Then, the p.m.f. of X is:

$$\Pr(X = i) = \begin{cases} 0.3 & \text{if } i = 80\\ 0.5\frac{1}{19} & \text{if } 81 \le i \le 99\\ 0.2 & \text{if } i = 100\\ 0 & \text{otherwise} \end{cases}$$

To get the average, we just multiply each outcome by how likely it is:

- No student will ever get below 20.
- 20% of the students got a 100.
- 30% of the students got an 80.
- The remaining 50% of the students got scores evenly distributed between 81,82,...,99.

Same Question: What is the average score in the class? Let X be the r.v. for a student's score in PVA 322. Then, the p.m.f. of X is:

$$\Pr(X = i) = \begin{cases} 0.3 & \text{if } i = 80\\ 0.5\frac{1}{19} & \text{if } 81 \le i \le 99\\ 0.2 & \text{if } i = 100\\ 0 & \text{otherwise} \end{cases}$$

To get the average, we just multiply each outcome by how likely it is: $\sum_{i=0}^{100} i \Pr(X = i) = 100 \Pr(X = 100) + 80 \Pr(X = 80) + \sum_{i=81}^{99} i \Pr(X = i)$ $= (100)(0.2) + (80)(0.3) + \sum_{i=81}^{99} i \frac{0.5}{19}$

A Little More Formal Now...

Definition (Random Variable)

A **random variable** is a variable in a randomized piece of code **or** A **random variable** is a function from the sample space to the naturals.

A **random variable** is a variable in a randomized piece of code **or** A **random variable** is a function from the sample space to the naturals.

Definition (Expected Value)

The **expected value** of a random variable $X : \Omega \to \mathbb{N}$ is the average value it takes on.

A **random variable** is a variable in a randomized piece of code **or** A **random variable** is a function from the sample space to the naturals.

Definition (Expected Value)

The **expected value** of a random variable $X : \Omega \to \mathbb{N}$ is the average value it takes on. As we figured out above, we can calculate it with:

A **random variable** is a variable in a randomized piece of code **or** A **random variable** is a function from the sample space to the naturals.

Definition (Expected Value)

The **expected value** of a random variable $X : \Omega \to \mathbb{N}$ is the average value it takes on. As we figured out above, we can calculate it with:

$$\mathbb{E}[X] = \sum_{x \in \Omega} X(x) \Pr(X = x) = \sum_{n=0}^{\infty} n \Pr(X = n)$$

Let X be the r.v. for the number of heads when we flip 2 coins with bias p. What is $\mathbb{E}[X]$?

Let X be the r.v. for the number of heads when we flip 2 coins with bias p. What is $\mathbb{E}[X]$?

Proof.

By definition of expected value, we know $\mathbb{E}[X] = \sum_{k=0}^{\infty} k \Pr(X = k)$.

Let X be the r.v. for the number of heads when we flip 2 coins with bias p. What is $\mathbb{E}[X]$?

Proof.

By definition of expected value, we know $\mathbb{E}[X] = \sum_{k=0}^{\infty} k \Pr(X = k)$. We know that if $0 \le k \le n$, then

We know that if $0 \le k \le n$, then

$$\Pr(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Let X be the r.v. for the number of heads when we flip 2 coins with bias p. What is $\mathbb{E}[X]$?

Proof.

By definition of expected value, we know $\mathbb{E}[X] = \sum_{k=0}^{\infty} k \Pr(X = k)$. We know that if $0 \le k \le n$, then

$$\Pr(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$\mathbb{E}[\mathbf{X}] = 0 \binom{2}{0} p^0 (1-p)^{2-0} + 1 \binom{2}{1} p^1 (1-p)^{2-1} + 2\binom{2}{2} p^2 (1-p)^{2-2}$$

= 2p(1-p) + 2p²
= 2p

Let X be the r.v. for the number of heads when we flip 2 coins with bias p. What is $\mathbb{E}[X]$?

Proof.

By definition of expected value, we know $\mathbb{E}[X] = \sum_{k=0}^{\infty} k \Pr(X = k)$. We know that if $0 \le k \le n$, then

$$\Pr(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$\mathbb{E}[X] = 0 \binom{2}{0} p^0 (1-p)^{2-0} + 1 \binom{2}{1} p^1 (1-p)^{2-1} + 2\binom{2}{2} p^2 (1-p)^{2-2}$$

= 2p(1-p) + 2p²
= 2p

Let X be the r.v. for the number of heads when we flip 2 coins with bias p. What is $\mathbb{E}[X]$?

Proof.

By definition of expected value, we know $\mathbb{E}[X] = \sum_{k=0}^{\infty} k \Pr(X = k)$. We know that if $0 \le k \le n$, then

$$\Pr(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$\mathbb{E}[X] = 0 \binom{2}{0} p^0 (1-p)^{2-0} + 1 \binom{2}{1} p^1 (1-p)^{2-1} + 2\binom{2}{2} p^2 (1-p)^{2-2}$$

= 2p(1-p) + 2p²
= 2p

Let X be the r.v. for the number of heads when we flip 2 coins with bias p. What is $\mathbb{E}[X]$?

Proof.

By definition of expected value, we know $\mathbb{E}[X] = \sum_{k=0}^{\infty} k \Pr(X = k)$. We know that if $0 \le k \le n$, then

$$\Pr(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$\mathbb{E}[X] = 0 \binom{2}{0} p^0 (1-p)^{2-0} + 1 \binom{2}{1} p^1 (1-p)^{2-1} + 2\binom{2}{2} p^2 (1-p)^{2-2}$$

= 2p(1-p) + 2p²
= 2p

Consider the following expectations:

■ **E**[1313]

- ${\mathbb E}[{ t getting HEADS}$ on a coin flip]
- \mathbb{E} [number of HEADS from a coin flip given that the flip is HEADS] What are they?

Consider the following expectations:

■ **E**[1313]

- ${f f \mathbb E}[{f getting HEADS}$ on a coin flip]
- $\mathbb{E}[$ number of HEADS from a coin flip given that the flip is HEADS]

What are they?

If 1313 is a r.v., then it must be the one that is always 1313. So, $\mathbb{E}[1313] = 1313.$

Consider the following expectations:

■ **E**[1313]

- ${\mathbb E}[{ t getting HEADS}$ on a coin flip]
- $\mathbb{E}[$ number of HEADS from a coin flip given that the flip is HEADS]

What are they?

- If 1313 is a r.v., then it must be the one that is always 1313. So, $\mathbb{E}[1313] = 1313$.
- THIS DOESN'T MAKE SENSE! We can only take the expectation of a r.v.-not an event!

Consider the following expectations:

■ **E**[1313]

- $\mathbb{E}[$ number of HEADS from a coin flip given that the flip is HEADS]

What are they?

- If 1313 is a r.v., then it must be the one that is always 1313. So, $\mathbb{E}[1313] = 1313$.
- THIS DOESN'T MAKE SENSE! We can only take the expectation of a r.v.-not an event!
- It's 1, because we're told the coin flip is HEADS

- The midterm is worth 20% of the grade.
- The homework is worth 30% of the grade.
- \blacksquare The final exam is worth 50% of the grade.

- The midterm is worth 20% of the grade.
- The homework is worth 30% of the grade.
- The final exam is worth 50% of the grade.

Stupid Question: Supposing that m was the average on the midterm, h was the average on the homework, and f was the average on the final exam, how do you calculate the average for the course?

- The midterm is worth 20% of the grade.
- The homework is worth 30% of the grade.
- The final exam is worth 50% of the grade.

Stupid Question: Supposing that *m* was the average on the midterm, *h* was the average on the homework, and *f* was the average on the final exam, how do you calculate the average for the course? **Answer:** 0.2m+0.3h+0.5f.

- The midterm is worth 20% of the grade.
- The homework is worth 30% of the grade.
- The final exam is worth 50% of the grade.

Stupid Question: Supposing that *m* was the average on the midterm, *h* was the average on the homework, and *f* was the average on the final exam, how do you calculate the average for the course? **Answer:** 0.2m + 0.3h + 0.5f.

Remember our interpretation of these exams as random variables?

- The midterm is worth 20% of the grade.
- The homework is worth 30% of the grade.
- The final exam is worth 50% of the grade.

Stupid Question: Supposing that *m* was the average on the midterm, *h* was the average on the homework, and *f* was the average on the final exam, how do you calculate the average for the course? **Answer:** 0.2m + 0.3h + 0.5f.

Remember our interpretation of these exams as random variables? What we're actually saying here is if G is the r.v. for a PVA 323 student's course grade,

- The midterm is worth 20% of the grade.
- The homework is worth 30% of the grade.
- The final exam is worth 50% of the grade.

Stupid Question: Supposing that *m* was the average on the midterm, *h* was the average on the homework, and *f* was the average on the final exam, how do you calculate the average for the course? **Answer:** 0.2m + 0.3h + 0.5f.

Remember our interpretation of these exams as random variables? What we're actually saying here is if G is the r.v. for a PVA 323 student's course grade, and M, H, and F are the obvious r.v.'s, then:

- The midterm is worth 20% of the grade.
- The homework is worth 30% of the grade.
- The final exam is worth 50% of the grade.

Stupid Question: Supposing that *m* was the average on the midterm, *h* was the average on the homework, and *f* was the average on the final exam, how do you calculate the average for the course? **Answer:** 0.2m + 0.3h + 0.5f.

Remember our interpretation of these exams as random variables? What we're actually saying here is if G is the r.v. for a PVA 323 student's course grade, and M, H, and F are the obvious r.v.'s, then:

We know that G = 0.2M + 0.3H + 0.5F; so, we can conclude

- The midterm is worth 20% of the grade.
- The homework is worth 30% of the grade.
- The final exam is worth 50% of the grade.

Stupid Question: Supposing that *m* was the average on the midterm, *h* was the average on the homework, and *f* was the average on the final exam, how do you calculate the average for the course? **Answer:** 0.2m + 0.3h + 0.5f.

Remember our interpretation of these exams as random variables? What we're actually saying here is if G is the r.v. for a PVA 323 student's course grade, and M, H, and F are the obvious r.v.'s, then:

We know that G = 0.2M + 0.3H + 0.5F; so, we can conclude

 $\mathbb{E}[G] = 0.2\mathbb{E}[M] + 0.3\mathbb{E}[H] + 0.5\mathbb{E}[F]$

- The midterm is worth 20% of the grade.
- The homework is worth 30% of the grade.
- The final exam is worth 50% of the grade.

Stupid Question: Supposing that *m* was the average on the midterm, *h* was the average on the homework, and *f* was the average on the final exam, how do you calculate the average for the course? **Answer:** 0.2m + 0.3h + 0.5f.

Remember our interpretation of these exams as random variables? What we're actually saying here is if G is the r.v. for a PVA 323 student's course grade, and M, H, and F are the obvious r.v.'s, then:

```
We know that G = 0.2M + 0.3H + 0.5F; so, we can conclude
```

 $\mathbb{E}[G] = 0.2\mathbb{E}[M] + 0.3\mathbb{E}[H] + 0.5\mathbb{E}[F]$

This is incredibly powerful!

- The midterm is worth 20% of the grade.
- The homework is worth 30% of the grade.
- The final exam is worth 50% of the grade.

Stupid Question: Supposing that *m* was the average on the midterm, *h* was the average on the homework, and *f* was the average on the final exam, how do you calculate the average for the course? **Answer:** 0.2m + 0.3h + 0.5f.

Remember our interpretation of these exams as random variables? What we're actually saying here is if G is the r.v. for a PVA 323 student's course grade, and M, H, and F are the obvious r.v.'s, then:

We know that G = 0.2M + 0.3H + 0.5F; so, we can conclude

 $\mathbb{E}[G] = 0.2\mathbb{E}[M] + 0.3\mathbb{E}[H] + 0.5\mathbb{E}[F]$

This is incredibly powerful! To calculate the course average, we just added together other averages.

If X, Y, and Z are r.v.'s such that Z = X + Y, then:

 $\mathbb{E}[Z] = \mathbb{E}[X] + \mathbb{E}[Y]$

Linearity of Expectation

Definition (Linearity of Expectation)

If X, Y, and Z are r.v.'s such that Z = X + Y, then:

 $\mathbb{E}[Z] = \mathbb{E}[X] + \mathbb{E}[Y]$

Generalizing a little, if we have $X = \sum_{i=1}^{n} X_i$, then

If X, Y, and Z are r.v.'s such that Z = X + Y, then:

 $\mathbb{E}[Z] = \mathbb{E}[X] + \mathbb{E}[Y]$

Generalizing a little, if we have $X = \sum_{i=1}^{n} X_i$, then

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X_i]$$

If X, Y, and Z are r.v.'s such that Z = X + Y, then:

 $\mathbb{E}[Z] = \mathbb{E}[X] + \mathbb{E}[Y]$

Generalizing a little, if we have $X = \sum_{i=1}^{n} X_i$, then

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X_i]$$

Definition (Indicator Random Variable)

If X, Y, and Z are r.v.'s such that Z = X + Y, then:

$$\mathbb{E}[Z] = \mathbb{E}[X] + \mathbb{E}[Y]$$

Generalizing a little, if we have $X = \sum_{i=1}^{n} X_i$, then

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X_i]$$

Definition (Indicator Random Variable)

An **indicator random variable** "indicates" whether a particular event E happens or not.

If X, Y, and Z are r.v.'s such that Z = X + Y, then:

$$\mathbb{E}[Z] = \mathbb{E}[X] + \mathbb{E}[Y]$$

Generalizing a little, if we have $X = \sum_{i=1}^{n} X_i$, then

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X_i]$$

Definition (Indicator Random Variable)

An **indicator random variable** "indicates" whether a particular event E happens or not. Usually, we define them via:

$$X = \begin{cases} 1 & \text{if BLAH happens} \\ 0 & \text{otherwise} \end{cases}$$

If X, Y, and Z are r.v.'s such that Z = X + Y, then:

$$\mathbb{E}[Z] = \mathbb{E}[X] + \mathbb{E}[Y]$$

Generalizing a little, if we have $X = \sum_{i=1}^{n} X_i$, then

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X_i]$$

Definition (Indicator Random Variable)

An **indicator random variable** "indicates" whether a particular event E happens or not. Usually, we define them via:

$$X = \begin{cases} 1 & \text{if BLAH happens} \\ 0 & \text{otherwise} \end{cases}$$

They come up with Linearity of Expectation a lot!

There are n people at a party who have checked their hats in. At the end of the party, the hat-check clerk randomly gives them their hats back. What is the expected number of people who got their hat back?
There are n people at a party who have checked their hats in. At the end of the party, the hat-check clerk randomly gives them their hats back. What is the expected number of people who got their hat back?

Let X be the r.v. for the number of people who get their hat back.

There are n people at a party who have checked their hats in. At the end of the party, the hat-check clerk randomly gives them their hats back. What is the expected number of people who got their hat back?

Let X be the r.v. for the number of people who get their hat back. By definition, $\mathbb{E}[X] = \sum_{i=0}^{n} i \Pr(X = i)$.

There are n people at a party who have checked their hats in. At the end of the party, the hat-check clerk randomly gives them their hats back. What is the expected number of people who got their hat back?

Let X be the r.v. for the number of people who get their hat back. By definition, $\mathbb{E}[X] = \sum_{i=0}^{n} i \Pr(X = i)$. So, now we calculate $\Pr(X = i)$.

There are n people at a party who have checked their hats in. At the end of the party, the hat-check clerk randomly gives them their hats back. What is the expected number of people who got their hat back?

Let X be the r.v. for the number of people who get their hat back. By definition, $\mathbb{E}[X] = \sum_{i=0}^{n} i \Pr(X = i)$. So, now we calculate $\Pr(X = i)$. $\Pr(X = i) =$

There are n people at a party who have checked their hats in. At the end of the party, the hat-check clerk randomly gives them their hats back. What is the expected number of people who got their hat back?

Let X be the r.v. for the number of people who get their hat back. By definition, $\mathbb{E}[X] = \sum_{i=0}^{n} i \Pr(X = i)$. So, now we calculate $\Pr(X = i)$. $\Pr(X = i) = \binom{n}{i}$

There are n people at a party who have checked their hats in. At the end of the party, the hat-check clerk randomly gives them their hats back. What is the expected number of people who got their hat back?

Let *X* be the r.v. for the number of people who get their hat back. By definition, $\mathbb{E}[X] = \sum_{i=0}^{n} i \Pr(X = i)$. So, now we calculate $\Pr(X = i)$. $\Pr(X = i) = {n \choose i} \frac{1}{n}$

There are n people at a party who have checked their hats in. At the end of the party, the hat-check clerk randomly gives them their hats back. What is the expected number of people who got their hat back?

Let *X* be the r.v. for the number of people who get their hat back. By definition, $\mathbb{E}[X] = \sum_{i=0}^{n} i \Pr(X = i)$. So, now we calculate $\Pr(X = i)$. $\Pr(X = i) = {n \choose i} \frac{1}{n} \frac{1}{n-1} \cdots \frac{1}{n-i}$

There are n people at a party who have checked their hats in. At the end of the party, the hat-check clerk randomly gives them their hats back. What is the expected number of people who got their hat back?

Let X be the r.v. for the number of people who get their hat back. By definition, $\mathbb{E}[X] = \sum_{i=0}^{n} i \Pr(X=i)$. So, now we calculate $\Pr(X=i)$. $\Pr(X=i) = \binom{n}{i} \frac{1}{n} \frac{1}{n-1} \cdots \frac{1}{n-i} \Pr(\text{none of the others get their hats back})$.

There are n people at a party who have checked their hats in. At the end of the party, the hat-check clerk randomly gives them their hats back. What is the expected number of people who got their hat back?

Let X be the r.v. for the number of people who get their hat back. By definition, $\mathbb{E}[X] = \sum_{i=0}^{n} i \Pr(X = i)$. So, now we calculate $\Pr(X = i)$. $\Pr(X = i) = \binom{n}{i} \frac{1}{n} \frac{1}{n-1} \cdots \frac{1}{n-i} \Pr(\text{none of the others get their hats back})$. I don't want to do this any more...make it easier?

There are n people at a party who have checked their hats in. At the end of the party, the hat-check clerk randomly gives them their hats back. What is the expected number of people who got their hat back?

Let X be the r.v. for the number of people who get their hat back. By definition, $\mathbb{E}[X] = \sum_{i=0}^{n} i \Pr(X = i)$. So, now we calculate $\Pr(X = i)$. $\Pr(X = i) = \binom{n}{i} \frac{1}{n} \frac{1}{n-1} \cdots \frac{1}{n-i} \Pr(\text{none of the others get their hats back})$. I don't want to do this any more...make it easier?

Let X be the r.v. for the number of people who get their hat back.

There are n people at a party who have checked their hats in. At the end of the party, the hat-check clerk randomly gives them their hats back. What is the expected number of people who got their hat back?

Let X be the r.v. for the number of people who get their hat back. By definition, $\mathbb{E}[X] = \sum_{i=0}^{n} i \Pr(X = i)$. So, now we calculate $\Pr(X = i)$. $\Pr(X = i) = \binom{n}{i} \frac{1}{n} \frac{1}{n-1} \cdots \frac{1}{n-i} \Pr(\text{none of the others get their hats back})$. I don't want to do this any more...make it easier?

Let X be the r.v. for the number of people who get their hat back. Let X_i be the i.r.v. for the *i*th person getting his hat back.

There are n people at a party who have checked their hats in. At the end of the party, the hat-check clerk randomly gives them their hats back. What is the expected number of people who got their hat back?

Let X be the r.v. for the number of people who get their hat back. By definition, $\mathbb{E}[X] = \sum_{i=0}^{n} i \Pr(X = i)$. So, now we calculate $\Pr(X = i)$. $\Pr(X = i) = \binom{n}{i} \frac{1}{n} \frac{1}{n-1} \cdots \frac{1}{n-i} \Pr(\text{none of the others get their hats back})$. I don't want to do this any more...make it easier?

Let X be the r.v. for the number of people who get their hat back. Let X_i be the i.r.v. for the *i*th person getting his hat back. Note that $X = \sum_{i=1}^{n} X_i$, because each of the *n* people either get their hat back or not.

There are n people at a party who have checked their hats in. At the end of the party, the hat-check clerk randomly gives them their hats back. What is the expected number of people who got their hat back?

Let X be the r.v. for the number of people who get their hat back. By definition, $\mathbb{E}[X] = \sum_{i=0}^{n} i \Pr(X = i)$. So, now we calculate $\Pr(X = i)$. $\Pr(X = i) = \binom{n}{i} \frac{1}{n} \frac{1}{n-1} \cdots \frac{1}{n-i} \Pr(\text{none of the others get their hats back})$. I don't want to do this any more...make it easier?

Let *X* be the r.v. for the number of people who get their hat back. Let *X_i* be the i.r.v. for the *i*th person getting his hat back. Note that $X = \sum_{i=1}^{n} X_i$, because each of the *n* people either get their hat back or not. Now, consider $\mathbb{E}[X_i] = 0 \Pr(X_i = 0) + 1 \Pr(X_i = 1) = \Pr(X_i = 1) = \frac{1}{n}$. There are n people at a party who have checked their hats in. At the end of the party, the hat-check clerk randomly gives them their hats back. What is the expected number of people who got their hat back?

Let X be the r.v. for the number of people who get their hat back. By definition, $\mathbb{E}[X] = \sum_{i=0}^{n} i \Pr(X = i)$. So, now we calculate $\Pr(X = i)$. $\Pr(X = i) = \binom{n}{i} \frac{1}{n} \frac{1}{n-1} \cdots \frac{1}{n-i} \Pr(\text{none of the others get their hats back})$. I don't want to do this any more...make it easier?

Let *X* be the r.v. for the number of people who get their hat back. Let *X_i* be the i.r.v. for the *i*th person getting his hat back. Note that $X = \sum_{i=1}^{n} X_i$, because each of the *n* people either get their hat back or not. Now, consider $\mathbb{E}[X_i] = 0 \Pr(X_i = 0) + 1 \Pr(X_i = 1) = \Pr(X_i = 1) = \frac{1}{n}$. So, $\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X_i] = \sum_{i=1}^{n} 1/n = 1$ by Linearity of Expectation. What is the expected number of HEADS from flipping a coin (with bias p) n times?

What is the expected number of HEADS from flipping a coin (with bias p) n times? Let X be r.v. for the number of HEADS from flipping a coin (with bias p) n times.

What is the expected number of HEADS from flipping a coin (with bias p) n times? Let X be r.v. for the number of HEADS from flipping a coin (with bias p) n times.

We know
$$\Pr(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$$
.

What is the expected number of HEADS from flipping a coin (with bias p) n times? Let X be r.v. for the number of HEADS from flipping a coin (with bias p) n times.

We know
$$\Pr(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$$
. Putting this into our formula gives:

$$\mathbb{E}[X] = \sum_{i=0}^n i \binom{n}{k} p^i (1-p)^{n-i}.$$

What is the expected number of HEADS from flipping a coin (with bias p) n times? Let X be r.v. for the number of HEADS from flipping a coin (with bias p) n times.

We know $\Pr(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$. Putting this into our formula gives: $\mathbb{E}[X] = \sum_{i=0}^{n} i \binom{n}{k} p^i (1-p)^{n-i}$. Any ideas on how to simplify this mess?

What is the expected number of HEADS from flipping a coin (with bias p) n times? Let X be r.v. for the number of HEADS from flipping a coin (with bias p) n times.

We know $\Pr(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$. Putting this into our formula gives: $\mathbb{E}[X] = \sum_{i=0}^{n} i \binom{n}{k} p^i (1-p)^{n-i}$. Any ideas on how to simplify this mess?

Linearity of Expectation to the rescue!

What is the expected number of HEADS from flipping a coin (with bias p) n times? Let X be r.v. for the number of HEADS from flipping a coin (with bias p) n times.

We know $\Pr(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$. Putting this into our formula gives: $\mathbb{E}[X] = \sum_{i=0}^{n} i \binom{n}{k} p^i (1-p)^{n-i}$. Any ideas on how to simplify this mess?

Linearity of Expectation to the rescue!

Let X_i be the i.r.v. for the *i*th coin coming up HEADS.

What is the expected number of HEADS from flipping a coin (with bias p) n times? Let X be r.v. for the number of HEADS from flipping a coin (with bias p) n times.

We know
$$\Pr(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$$
. Putting this into our formula gives:
 $\mathbb{E}[X] = \sum_{i=0}^{n} i \binom{n}{k} p^i (1-p)^{n-i}$. Any ideas on how to simplify this mess?

Linearity of Expectation to the rescue!

Let X_i be the i.r.v. for the *i*th coin coming up HEADS. We know $\mathbb{E}[X_i] = \Pr(X_i = 1) = p.$

What is the expected number of HEADS from flipping a coin (with bias p) n times? Let X be r.v. for the number of HEADS from flipping a coin (with bias p) n times.

We know
$$\Pr(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$$
. Putting this into our formula gives:
 $\mathbb{E}[X] = \sum_{i=0}^{n} i \binom{n}{k} p^i (1-p)^{n-i}$. Any ideas on how to simplify this mess?

Linearity of Expectation to the rescue!

Let X_i be the i.r.v. for the *i*th coin coming up HEADS. We know $\mathbb{E}[X_i] = \Pr(X_i = 1) = p$. So, since $X = \sum_{i=1}^n X_i$, we know,

What is the expected number of HEADS from flipping a coin (with bias p) n times? Let X be r.v. for the number of HEADS from flipping a coin (with bias p) n times.

We know
$$\Pr(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$$
. Putting this into our formula gives:
 $\mathbb{E}[X] = \sum_{i=0}^{n} i \binom{n}{k} p^i (1-p)^{n-i}$. Any ideas on how to simplify this mess?

Linearity of Expectation to the rescue!

Let X_i be the i.r.v. for the *i*th coin coming up HEADS. We know $\mathbb{E}[X_i] = \Pr(X_i = 1) = p$. So, since $X = \sum_{i=1}^n X_i$, we know, by Linearity of Expectation, that $\mathbb{E}[X] = \sum_{i=1}^n \mathbb{E}[X_i]$

What is the expected number of HEADS from flipping a coin (with bias p) n times? Let X be r.v. for the number of HEADS from flipping a coin (with bias p) n times.

We know
$$\Pr(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$$
. Putting this into our formula gives:
 $\mathbb{E}[X] = \sum_{i=0}^{n} i \binom{n}{k} p^i (1-p)^{n-i}$. Any ideas on how to simplify this mess?

Linearity of Expectation to the rescue!

Let X_i be the i.r.v. for the *i*th coin coming up HEADS. We know $\mathbb{E}[X_i] = \Pr(X_i = 1) = p$. So, since $X = \sum_{i=1}^n X_i$, we know, by Linearity of Expectation, that $\mathbb{E}[X] = \sum_{i=1}^n \mathbb{E}[X_i] = \sum_{i=1}^n p = np$.

Remember from last time, we mentioned that if A_1, A_2, \ldots, A_n are disjoint events, then

$$\Pr(A_1 \cup A_2 \cup \dots \cup A_n) = \sum_{i=1}^n \Pr(A_i)$$

Remember from last time, we mentioned that if A_1, A_2, \ldots, A_n are disjoint events, then

$$\Pr(A_1 \cup A_2 \cup \dots \cup A_n) = \sum_{i=1}^n \Pr(A_i)$$

Let A and B be events.

Remember from last time, we mentioned that if A_1, A_2, \ldots, A_n are disjoint events, then

$$\Pr(A_1 \cup A_2 \cup \cdots \cup A_n) = \sum_{i=1}^n \Pr(A_i)$$

Let A and B be events. Note that $A \cap B$ and $\overline{A} \cap \overline{B}$ are disjoint.

Remember from last time, we mentioned that if A_1, A_2, \ldots, A_n are disjoint events, then

$$\Pr(A_1 \cup A_2 \cup \cdots \cup A_n) = \sum_{i=1}^n \Pr(A_i)$$

Let A and B be events. Note that $A \cap B$ and $A \cap \overline{B}$ are disjoint. So, $\Pr(A) = \Pr((A \cap B) \cup (A \cap \overline{B}))$

Remember from last time, we mentioned that if A_1, A_2, \ldots, A_n are disjoint events, then

$$\Pr(A_1 \cup A_2 \cup \cdots \cup A_n) = \sum_{i=1}^n \Pr(A_i)$$

Let A and B be events. Note that $A \cap B$ and $A \cap \overline{B}$ are disjoint. So, $\Pr(A) = \Pr((A \cap B) \cup (A \cap \overline{B})) = \Pr(A \cap B) + \Pr(A \cap \overline{B}).$

Remember from last time, we mentioned that if A_1, A_2, \ldots, A_n are disjoint events, then

$$\Pr(A_1 \cup A_2 \cup \cdots \cup A_n) = \sum_{i=1}^n \Pr(A_i)$$

Let A and B be events. Note that $A \cap B$ and $A \cap \overline{B}$ are disjoint. So, $Pr(A) = Pr((A \cap B) \cup (A \cap \overline{B})) = Pr(A \cap B) + Pr(A \cap \overline{B}).$ Using the definition of conditional probability, it follows that:

Remember from last time, we mentioned that if A_1, A_2, \ldots, A_n are disjoint events, then

$$\Pr(A_1 \cup A_2 \cup \cdots \cup A_n) = \sum_{i=1}^n \Pr(A_i)$$

Let A and B be events. Note that $A \cap B$ and $A \cap \overline{B}$ are disjoint. So, $Pr(A) = Pr((A \cap B) \cup (A \cap \overline{B})) = Pr(A \cap B) + Pr(A \cap \overline{B}).$ Using the definition of conditional probability, it follows that:

Definition (Law of Total Probability)

 $\Pr(A) = \Pr(A \mid B) \Pr(B) + \Pr(A \mid \overline{B}) \Pr(\overline{B})$

This can be very useful when calculating probabilities.

Remember from last time, we mentioned that if A_1, A_2, \ldots, A_n are disjoint events, then

$$\Pr(A_1 \cup A_2 \cup \cdots \cup A_n) = \sum_{i=1}^n \Pr(A_i)$$

Let A and B be events. Note that $A \cap B$ and $A \cap \overline{B}$ are disjoint. So, $Pr(A) = Pr((A \cap B) \cup (A \cap \overline{B})) = Pr(A \cap B) + Pr(A \cap \overline{B}).$ Using the definition of conditional probability, it follows that:

Definition (Law of Total Probability)

$$\Pr(A) = \Pr(A \mid B) \Pr(B) + \Pr(A \mid \overline{B}) \Pr(\overline{B})$$

This can be very useful when calculating probabilities. It has an analog for expectation:

Remember from last time, we mentioned that if A_1, A_2, \ldots, A_n are disjoint events, then

$$\Pr(A_1 \cup A_2 \cup \cdots \cup A_n) = \sum_{i=1}^n \Pr(A_i)$$

Let A and B be events. Note that $A \cap B$ and $A \cap \overline{B}$ are disjoint. So, $Pr(A) = Pr((A \cap B) \cup (A \cap \overline{B})) = Pr(A \cap B) + Pr(A \cap \overline{B}).$ Using the definition of conditional probability, it follows that:

Definition (Law of Total Probability)

$$\Pr(A) = \Pr(A \mid B) \Pr(B) + \Pr(A \mid \overline{B}) \Pr(\overline{B})$$

This can be very useful when calculating probabilities. It has an analog for expectation: Let X be a r.v.

Remember from last time, we mentioned that if A_1, A_2, \ldots, A_n are disjoint events, then

$$\Pr(A_1 \cup A_2 \cup \cdots \cup A_n) = \sum_{i=1}^n \Pr(A_i)$$

Let A and B be events. Note that $A \cap B$ and $A \cap \overline{B}$ are disjoint. So, $Pr(A) = Pr((A \cap B) \cup (A \cap \overline{B})) = Pr(A \cap B) + Pr(A \cap \overline{B}).$ Using the definition of conditional probability, it follows that:

Definition (Law of Total Probability)

$$\Pr(A) = \Pr(A \mid B) \Pr(B) + \Pr(A \mid \overline{B}) \Pr(\overline{B})$$

This can be very useful when calculating probabilities. It has an analog for expectation: Let X be a r.v.

Definition (Law of Total Expectation)

$$\mathbb{E}[X] = \mathbb{E}[X \mid A] \operatorname{Pr}(A) + \mathbb{E}[X \mid \overline{A}] \operatorname{Pr}(\overline{A})$$

Back to Last Lecture

```
1 X = 1

2 while FlipCoin(p) != HEADS:

3 X++
```

Let X be the r.v. for how many loop iterations the code gets through.
Back to Last Lecture

```
1 X = 1
2 while FlipCoin(p) != HEADS:
3 X++
```

Let X be the r.v. for how many loop iterations the code gets through.

Let H be the event that the next coin flip comes up HEADS.

```
1 X = 1
2 while FlipCoin(p) != HEADS:
3 X++
```

Let H be the event that the next coin flip comes up HEADS. $\mathbb{E}[X] = \mathbb{E}[X \mid H] \Pr(H) + \mathbb{E}[X \mid \overline{H}] \Pr(\overline{H})$

```
1 X = 1
2 while FlipCoin(p) != HEADS:
3 X++
```

Let H be the event that the next coin flip comes up HEADS. $\mathbb{E}[X] = \mathbb{E}[X \mid H] \Pr(H) + \mathbb{E}[X \mid \overline{H}] \Pr(\overline{H})$ [Law of Total Expectation]

```
1 X = 1
2 while FlipCoin(p) != HEADS:
3 X++
```

Let H be the event that the next coin flip comes up HEADS. $\mathbb{E}[X] = \mathbb{E}[X \mid H] \Pr(H) + \mathbb{E}[X \mid \overline{H}] \Pr(\overline{H})$ [Law of Total Expectation] $= \mathbb{E}[X \mid H] p + \mathbb{E}[X \mid \overline{H}] (1-p)$

```
X = 1
  while FlipCoin(p) != HEADS:
2
3
     X++
```

Let H be the event that the next coin flip comes up HEADS. $\mathbb{E}[X] = \mathbb{E}[X \mid H] \Pr(H) + \mathbb{E}[X \mid \overline{H}] \Pr(\overline{H})$ [Law of Total Expectation] $= \mathbb{E}[X \mid H] p + \mathbb{E}[X \mid \overline{H}] (1-p)$ [The coin has bias p]

```
1 X = 1
2 while FlipCoin(p) != HEADS:
3 X++
```

Let H be the event that the next coin flip comes up HEADS. $\mathbb{E}[X] = \mathbb{E}[X \mid H] \Pr(H) + \mathbb{E}[X \mid \overline{H}] \Pr(\overline{H})$ [Law of Total Expectation] $= \mathbb{E}[X \mid H] p + \mathbb{E}[X \mid \overline{H}] (1-p)$ [The coin has bias p] $= p + \mathbb{E}[X | \overline{H}](1-p)$

```
1 X = 1
2 while FlipCoin(p) != HEADS:
3 X++
```

Let H be the event that the next coin flip comes up HEADS. $\mathbb{E}[X] = \mathbb{E}[X \mid H] \Pr(H) + \mathbb{E}[X \mid \overline{H}] \Pr(\overline{H})$ [Law of Total Expectation] $= \mathbb{E}[X \mid H] p + \mathbb{E}[X \mid \overline{H}] (1-p)$ [The coin has bias p] $= p + \mathbb{E}[X | \overline{H}](1-p)$ [If we get HEADS, we're done!]

```
1 X = 1
2 while FlipCoin(p) != HEADS:
3 X++
```

Let H be the event that the next coin flip comes up HEADS. $\mathbb{E}[X] = \mathbb{E}[X \mid H] \operatorname{Pr}(H) + \mathbb{E}[X \mid \overline{H}] \operatorname{Pr}(\overline{H})$ [Law of Total Expectation] $= \mathbb{E}[X \mid H] p + \mathbb{E}[X \mid \overline{H}] (1-p)$ [The coin has bias p] $= p + \mathbb{E}[X | \overline{H}](1-p)$ [If we get HEADS, we're done!] $= p + \mathbb{E}[X+1](1-p)$

```
1 X = 1
2 while FlipCoin(p) != HEADS:
3 X++
```

Let H be the event that the next coin flip comes up HEADS. $\mathbb{E}[X] = \mathbb{E}[X \mid H] \operatorname{Pr}(H) + \mathbb{E}[X \mid \overline{H}] \operatorname{Pr}(\overline{H})$ [Law of Total Expectation] $= \mathbb{E}[X \mid H] p + \mathbb{E}[X \mid \overline{H}] (1-p)$ [The coin has bias p] $= p + \mathbb{E}[X | \overline{H}](1-p)$ [If we get HEADS, we're done!] $= p + \mathbb{E}[X+1](1-p)$ [*]

```
1 X = 1
2 while FlipCoin(p) != HEADS:
3 X++
```

Let H be the event that the next coin flip comes up HEADS. $\mathbb{E}[X] = \mathbb{E}[X \mid H] \operatorname{Pr}(H) + \mathbb{E}[X \mid \overline{H}] \operatorname{Pr}(\overline{H})$ [Law of Total Expectation] $= \mathbb{E}[X \mid H] p + \mathbb{E}[X \mid \overline{H}] (1-p)$ [The coin has bias p] $= p + \mathbb{E}[X | \overline{H}](1-p)$ [If we get HEADS, we're done!] $= p + \mathbb{E}[X+1](1-p)$ [*] $= p + \mathbb{E}[X](1-p) + \mathbb{E}[1](1-p)$

```
1 X = 1
2 while FlipCoin(p) != HEADS:
3 X++
```

Let H be the event that the next coin flip comes up HEADS. $\mathbb{E}[X] = \mathbb{E}[X \mid H] \operatorname{Pr}(H) + \mathbb{E}[X \mid \overline{H}] \operatorname{Pr}(\overline{H})$ [Law of Total Expectation] $= \mathbb{E}[X \mid H] p + \mathbb{E}[X \mid \overline{H}] (1-p)$ [The coin has bias p] $= p + \mathbb{E}[X | \overline{H}](1-p)$ [If we get HEADS, we're done!] $= p + \mathbb{E}[X+1](1-p)$ [*] $= p + \mathbb{E}[X](1-p) + \mathbb{E}[1](1-p)$ [Linearity of Expectation]

```
1 X = 1
2 while FlipCoin(p) != HEADS:
3 X++
```

Let H be the event that the next coin flip comes up HEADS. $\mathbb{E}[X] = \mathbb{E}[X \mid H] \operatorname{Pr}(H) + \mathbb{E}[X \mid \overline{H}] \operatorname{Pr}(\overline{H})$ [Law of Total Expectation] $= \mathbb{E}[X \mid H] p + \mathbb{E}[X \mid \overline{H}] (1-p)$ [The coin has bias p] $= p + \mathbb{E}[X | \overline{H}](1-p)$ [If we get HEADS, we're done!] $= p + \mathbb{E}[X+1](1-p)$ [*] $= p + \mathbb{E}[X](1-p) + \mathbb{E}[1](1-p)$ [Linearity of Expectation] $= 1 + (1 - p)\mathbb{E}[X]$

that flip, we're at the same place we started at! So, $\mathbb{E}[X | \overline{H}] = \mathbb{E}[X+1]$.

```
1 X = 1
2 while FlipCoin(p) != HEADS:
3 X++
```

Let *H* be the event that the next coin flip comes up HEADS. $\mathbb{E}[X] = \mathbb{E}[X | H] \Pr(H) + \mathbb{E}[X | \overline{H}] \Pr(\overline{H}) \quad [Law of Total Expectation]$ $= \mathbb{E}[X | H] p + \mathbb{E}[X | \overline{H}] (1 - p) \quad [The coin has bias p]$ $= p + \mathbb{E}[X | \overline{H}] (1 - p) \quad [If we get HEADS, we're done!]$ $= p + \mathbb{E}[X + 1] (1 - p) \quad [\star]$ $= p + \mathbb{E}[X] (1 - p) + \mathbb{E}[1] (1 - p) \quad [Linearity of Expectation]$ $= 1 + (1 - p)\mathbb{E}[X] \quad [Simplifying]$ $= \frac{1}{p}$

* – Since we know we got TAILS once, we've flipped 1 coin. But ignoring that flip, we're at the same place we started at! So, $\mathbb{E}[X | \overline{H}] = \mathbb{E}[X+1]$.

```
1 X = 1
2 while FlipCoin(p) != HEADS:
3 X++
```

Let *H* be the event that the next coin flip comes up HEADS. $\mathbb{E}[X] = \mathbb{E}[X | H] \Pr(H) + \mathbb{E}[X | \overline{H}] \Pr(\overline{H}) \quad [Law of Total Expectation]$ $= \mathbb{E}[X | H] p + \mathbb{E}[X | \overline{H}] (1 - p) \quad [The coin has bias p]$ $= p + \mathbb{E}[X | \overline{H}] (1 - p) \quad [If we get HEADS, we're done!]$ $= p + \mathbb{E}[X + 1] (1 - p) \quad [\star]$ $= p + \mathbb{E}[X] (1 - p) + \mathbb{E}[1] (1 - p) \quad [Linearity of Expectation]$ $= 1 + (1 - p)\mathbb{E}[X] \quad [Simplifying]$ $= \frac{1}{-} \quad [Solve for \mathbb{E}[X]]$

* – Since we know we got TAILS once, we've flipped 1 coin. But ignoring that flip, we're at the same place we started at! So, $\mathbb{E}[X | \overline{H}] = \mathbb{E}[X+1]$.

```
1 X = 1
2 while FlipCoin(p) != HEADS:
3 X++
```

Let *H* be the event that the next coin flip comes up HEADS. $\mathbb{E}[X] = \mathbb{E}[X | H] \Pr(H) + \mathbb{E}[X | \overline{H}] \Pr(\overline{H}) \quad [Law of Total Expectation]$ $= \mathbb{E}[X | H] p + \mathbb{E}[X | \overline{H}] (1 - p) \quad [The coin has bias p]$ $= p + \mathbb{E}[X | \overline{H}] (1 - p) \quad [If we get HEADS, we're done!]$ $= p + \mathbb{E}[X + 1] (1 - p) \quad [\star]$ $= p + \mathbb{E}[X] (1 - p) + \mathbb{E}[1] (1 - p) \quad [Linearity of Expectation]$ $= 1 + (1 - p)\mathbb{E}[X] \quad [Simplifying]$ $= \frac{1}{p} \quad [Solve for \mathbb{E}[X]]$

* – Since we know we got TAILS once, we've flipped 1 coin. But ignoring that flip, we're at the same place we started at! So, $\mathbb{E}[X | \overline{H}] = \mathbb{E}[X+1]$.

```
1 X = 1
2 while FlipCoin(p) != HEADS:
3 X++
```

Let H be the event that the next coin flip comes up HEADS. $\mathbb{E}[X] = \mathbb{E}[X \mid H] \Pr(H) + \mathbb{E}[X \mid \overline{H}] \Pr(\overline{H})$ [Law of Total Expectation] $= \mathbb{E}[X \mid H] p + \mathbb{E}[X \mid \overline{H}] (1-p)$ [The coin has bias p] $= p + \mathbb{E}[X | \overline{H}](1-p)$ [If we get HEADS, we're done!] $= p + \mathbb{E}[X+1](1-p)$ [*] $= p + \mathbb{E}[X](1-p) + \mathbb{E}[1](1-p)$ [Linearity of Expectation] $= 1 + (1 - p)\mathbb{E}[X]$ [Simplifying] _ 1 [Solve for $\mathbb{E}[X]$] * - Since we know we got TAILS once, we've flipped 1 coin. But ignoring

* – Since we know we got TAILS once, we ve flipped 1 coin. But ignoring that flip, we're at the same place we started at! So, $\mathbb{E}[X | \overline{H}] = \mathbb{E}[X+1]$.