CS

Mathematical Foundations of Computing

CS 13: Mathematical Foundations of Computing

Expectation

Random Variables

This is a variable:
1 variable = 17

Random Variables

This is a variable:
1 variable = 17

This is a random variable:
1 random_variable = RollDie(6)

Random Variables

This is a variable:
1 variable = 17

This is a random variable:
1 random_variable $=$ RollDie(6)

These are also random variables:
$1 r_{-}$var_1 = Rolldie(2)
$2 r_{-} v a r_{-} 2=$ RollDie(3)
3 r_var_3 = r_{-}var_1 + $r_{-} v a r_{-} 2$

Random Variables

This is a variable:
1 variable = 17

This is a random variable:
1 random_variable = Rolldie(6)

These are also random variables:
1 r_var_1 = Rolldie(2)
2 r_var_2 = Rolldie(3)
3 r_var_3 = r_var_1 + r_var_2
Let Ω be the sample space of an experiment.

This is a variable:
1 variable $=17$

This is a random variable:
1 random_variable $=$ RollDie(6)

These are also random variables:
1 r_var_1 = Rolldie(2)
2 r_var_2 = Rolldie(3)
3 r_var_3 = r_var_1 + r_var_2
Let Ω be the sample space of an experiment.
Formally, we can view a random variable X as a function from Ω to \mathbb{N}.

This is a variable:
1 variable $=17$

This is a random variable:
1 random_variable = RollDie(6)

These are also random variables:
1 r_var_1 = RollDie(2)
$2 r_{-} v a r_{-} 2=$ RollDie(3)
3 r_var_3 = r_var_1 + r_var_2
Let Ω be the sample space of an experiment.
Formally, we can view a random variable X as a function from Ω to \mathbb{N}.
Looking at the examples above: $r_{_}$var_1: [2] \rightarrow [2]

Random Variables

```
1 r_var_1 = RollDie(2)
2 r_var_2 = RollDie(3)
3 r_var_3 = r_var_1 + r_var_2
```

We often want to talk about the probability mass function of a random variable:

Random Variables

```
1 r_var_1 = RollDie(2)
2 r_var_2 = RollDie(3)
3 r_var_3 = r_var_1 + r_var_2
```

We often want to talk about the probability mass function of a random variable:

$$
\operatorname{Pr}\left(r_{-} \text {var_} 1=x\right)=\frac{1}{2}(\text { for } x \in[2])
$$

Random Variables

```
1 r_var_1 = RollDie(2)
2 r_var_2 = RollDie(3)
3 r_var_3 = r_var_1 + r_var_2
```

We often want to talk about the probability mass function of a random variable:

$$
\begin{aligned}
& \operatorname{Pr}\left(r_{-} \text {var_1 }=x\right)=\frac{1}{2}(\text { for } x \in[2]) \\
& \operatorname{Pr}\left(r_{-} v a r_{-} 2=x\right)=\frac{1}{3}(\text { for } x \in[3])
\end{aligned}
$$

```
1 r_var_1 = RollDie(2)
2 r_var_2 = RollDie(3)
3 r_var_3 = r_var_1 + r_var_2
```

We often want to talk about the probability mass function of a random variable:

$$
\begin{aligned}
& \operatorname{Pr}\left(r_{-} \text {var_1 }=x\right)=\frac{1}{2}(\text { for } x \in[2]) \\
& \operatorname{Pr}\left(r_{-} v a r_{-} 2=x\right)=\frac{1}{3}(\text { for } x \in[3]) \\
& \operatorname{Pr}\left(r_{-} \operatorname{var}_{-} 3=x\right)= \begin{cases}1 / 6 & \text { if } x=2 \\
2 / 6 & \text { if } x=3 \\
2 / 6 & \text { if } x=4 \\
1 / 6 & \text { if } x=5\end{cases}
\end{aligned}
$$

```
1 r_var_1 = RollDie(2)
2 r_var_2 = RollDie(3)
3 r_var_3 = r_var_1 + r_var_2
```

We often want to talk about the probability mass function of a random variable:

$$
\begin{aligned}
& \operatorname{Pr}\left(r_{-} \text {var_1 }=x\right)=\frac{1}{2}(\text { for } x \in[2]) \\
& \operatorname{Pr}\left(r_{-} \text {var_2 }=x\right)=\frac{1}{3}(\text { for } x \in[3]) \\
& \operatorname{Pr}\left(r_{-} \text {var_ } 3=x\right)= \begin{cases}1 / 6 & \text { if } x=2 \\
2 / 6 & \text { if } x=3 \\
2 / 6 & \text { if } x=4 \\
1 / 6 & \text { if } x=5\end{cases}
\end{aligned}
$$

So, to recap, a random variable is a variable in a program that depends on a random process.

```
1 r_var_1 = RollDie(2)
2 r_var_2 = RollDie(3)
3 r_var_3 = r_var_1 + r_var_2
```

We often want to talk about the probability mass function of a random variable:

$$
\begin{aligned}
& \operatorname{Pr}\left(r_{-} \text {var_1 }=x\right)=\frac{1}{2}(\text { for } x \in[2]) \\
& \operatorname{Pr}\left(r_{-} \text {var_2 }=x\right)=\frac{1}{3}(\text { for } x \in[3]) \\
& \operatorname{Pr}\left(r_{-} \text {var_ } 3=x\right)= \begin{cases}1 / 6 & \text { if } x=2 \\
2 / 6 & \text { if } x=3 \\
2 / 6 & \text { if } x=4 \\
1 / 6 & \text { if } x=5\end{cases}
\end{aligned}
$$

So, to recap, a random variable is a variable in a program that depends on a random process. For our purposes, we will assume they always take on natural number values.

Grading Policies: PVA 321

PVA 321 has the following grading policy:
The final exam is worth 100% of the grade.

Grading Policies: PVA 321

PVA 321 has the following grading policy:

- The final exam is worth 100% of the grade.

Suppose that we know the following facts:

Grading Policies: PVA 321

PVA 321 has the following grading policy:

- The final exam is worth 100% of the grade.

Suppose that we know the following facts:

- No student will ever get below 20.

PVA 321 has the following grading policy:

- The final exam is worth 100% of the grade.

Suppose that we know the following facts:

- No student will ever get below 20.
- Students are equally likely to get any score between 20 and 100.

PVA 321 has the following grading policy:

- The final exam is worth 100% of the grade.

Suppose that we know the following facts:

- No student will ever get below 20.
- Students are equally likely to get any score between 20 and 100.

What is the average grade in PVA 321?

PVA 321 has the following grading policy:

- The final exam is worth 100% of the grade.

Suppose that we know the following facts:

- No student will ever get below 20.

Students are equally likely to get any score between 20 and 100.

What is the average grade in PVA 321?
We know scores between 20 and 100 are equally likely; so, let's say they each show up k times.

PVA 321 has the following grading policy:

- The final exam is worth 100% of the grade.

Suppose that we know the following facts:

- No student will ever get below 20.
- Students are equally likely to get any score between 20 and 100.

What is the average grade in PVA 321?
We know scores between 20 and 100 are equally likely; so, let's say they each show up k times.

Now, just using the definition of average, we get

$$
\frac{20 k+21 k+\cdots+100 k}{81 k}=\frac{1}{81}\left(\sum_{i=20}^{100} i\right)
$$

Grading Policies: PVA 322

PVA 322 has the same grading policy:
The final exam is worth 100% of the grade.

Grading Policies: PVA 322

PVA 322 has the same grading policy:
The final exam is worth 100% of the grade.
But the distribution of scores is different:

Grading Policies: PVA 322

PVA 322 has the same grading policy:
The final exam is worth 100% of the grade.
But the distribution of scores is different:

- No student will ever get below 20.

Grading Policies: PVA 322

PVA 322 has the same grading policy:
The final exam is worth 100% of the grade.
But the distribution of scores is different:

- No student will ever get below 20.
- 20% of the students got a 100 .

Grading Policies: PVA 322

PVA 322 has the same grading policy:
The final exam is worth 100% of the grade.
But the distribution of scores is different:
No student will ever get below 20.

- 20% of the students got a 100 .
- 30% of the students got an 80 .

Grading Policies: PVA 322

PVA 322 has the same grading policy:

- The final exam is worth 100% of the grade.

But the distribution of scores is different:

- No student will ever get below 20.
- 20% of the students got a 100 .
- 30% of the students got an 80 .
- The remaining 50% of the students got scores evenly distributed between $81,82, \ldots, 99$.

Grading Policies: PVA 322

PVA 322 has the same grading policy:

- The final exam is worth 100% of the grade.

But the distribution of scores is different:

- No student will ever get below 20.
- 20% of the students got a 100 .
- 30% of the students got an 80 .
- The remaining 50% of the students got scores evenly distributed between $81,82, \ldots, 99$.

Same Question: What is the average score in the class?

PVA 322 has the same grading policy:

- The final exam is worth 100% of the grade.

But the distribution of scores is different:

- No student will ever get below 20.
- 20% of the students got a 100 .
- 30% of the students got an 80 .
- The remaining 50% of the students got scores evenly distributed between $81,82, \ldots, 99$.

Same Question: What is the average score in the class? Say there are n students total.

PVA 322 has the same grading policy:

- The final exam is worth 100% of the grade.

But the distribution of scores is different:

- No student will ever get below 20.
- 20% of the students got a 100 .
- 30% of the students got an 80 .
- The remaining 50% of the students got scores evenly distributed between $81,82, \ldots, 99$.

Same Question: What is the average score in the class? Say there are n students total. Then, $0.2 n$ of the students got a $100,0.3 n$ of the students got an 80, and for each score between 81 and $99, \frac{0.5 n}{19}$ students got that score.

PVA 322 has the same grading policy:

- The final exam is worth 100% of the grade.

But the distribution of scores is different:

- No student will ever get below 20.
- 20% of the students got a 100 .
- 30% of the students got an 80 .
- The remaining 50% of the students got scores evenly distributed between $81,82, \ldots, 99$.

Same Question: What is the average score in the class? Say there are n students total. Then, $0.2 n$ of the students got a 100, $0.3 n$ of the students got an 80, and for each score between 81 and $99, \frac{0.5 n}{19}$ students got that score. So, taking the average gives us:

PVA 322 has the same grading policy:

- The final exam is worth 100% of the grade.

But the distribution of scores is different:

- No student will ever get below 20.
$\square 20 \%$ of the students got a 100 .
- 30% of the students got an 80 .
- The remaining 50% of the students got scores evenly distributed between $81,82, \ldots, 99$.

Same Question: What is the average score in the class? Say there are n students total. Then, $0.2 n$ of the students got a $100,0.3 n$ of the students got an 80, and for each score between 81 and $99, \frac{0.5 n}{19}$ students got that score. So, taking the average gives us:

$$
\frac{100(0.2 n)+80(0.3 n)+\sum_{i=81}^{99} i \frac{0.5 n}{19}}{n}=(100)(0.2)+(80)(0.3)+\sum_{i=81}^{99} i \frac{0.5}{19}
$$

PVA 322 has the same grading policy:

- The final exam is worth 100% of the grade.

But the distribution of scores is different:

- No student will ever get below 20.
$\square 20 \%$ of the students got a 100 .
- 30% of the students got an 80 .
- The remaining 50% of the students got scores evenly distributed between $81,82, \ldots, 99$.

Same Question: What is the average score in the class? Say there are n students total. Then, $0.2 n$ of the students got a $100,0.3 n$ of the students got an 80, and for each score between 81 and $99, \frac{0.5 n}{19}$ students got that score. So, taking the average gives us:

$$
\frac{100(0.2 n)+80(0.3 n)+\sum_{i=81}^{99} i \frac{0.5 n}{19}}{n}=(100)(0.2)+(80)(0.3)+\sum_{i=81}^{99} i \frac{0.5}{19}
$$

What does this have to do with probability? Let's rephrase everything!

Grading Policies: PVA 322

No student will ever get below 20.
20\% of the students got a 100 .

- 30% of the students got an 80 .
- The remaining 50% of the students got scores evenly distributed between $81,82, \ldots, 99$.
Same Question: What is the average score in the class? Let X be the r.v. for a student's score in PVA 322.

Grading Policies: PVA 322

No student will ever get below 20.
20\% of the students got a 100 .

- 30% of the students got an 80 .

The remaining 50% of the students got scores evenly distributed between $81,82, \ldots, 99$.

Same Question: What is the average score in the class? Let X be the r.v. for a student's score in PVA 322. Then, the p.m.f. of X is:

No student will ever get below 20.

- 20% of the students got a 100 .
- 30% of the students got an 80 .
- The remaining 50% of the students got scores evenly distributed between $81,82, \ldots, 99$.

Same Question: What is the average score in the class? Let X be the r.v. for a student's score in PVA 322. Then, the p.m.f. of X is:

$$
\operatorname{Pr}(X=i)= \begin{cases}0.3 & \text { if } i=80 \\ 0.5 \frac{1}{19} & \text { if } 81 \leq i \leq 99 \\ 0.2 & \text { if } i=100 \\ 0 & \text { otherwise }\end{cases}
$$

No student will ever get below 20.

- 20% of the students got a 100 .
- 30% of the students got an 80 .
- The remaining 50% of the students got scores evenly distributed between $81,82, \ldots, 99$.

Same Question: What is the average score in the class? Let X be the r.v. for a student's score in PVA 322. Then, the p.m.f. of X is:

$$
\operatorname{Pr}(X=i)= \begin{cases}0.3 & \text { if } i=80 \\ 0.5 \frac{1}{19} & \text { if } 81 \leq i \leq 99 \\ 0.2 & \text { if } i=100 \\ 0 & \text { otherwise }\end{cases}
$$

To get the average, we just multiply each outcome by how likely it is:

No student will ever get below 20.

- 20% of the students got a 100 .
- 30% of the students got an 80 .
- The remaining 50% of the students got scores evenly distributed between $81,82, \ldots, 99$.

Same Question: What is the average score in the class? Let X be the r.v. for a student's score in PVA 322. Then, the p.m.f. of X is:

$$
\operatorname{Pr}(X=i)= \begin{cases}0.3 & \text { if } i=80 \\ 0.5 \frac{1}{19} & \text { if } 81 \leq i \leq 99 \\ 0.2 & \text { if } i=100 \\ 0 & \text { otherwise }\end{cases}
$$

To get the average, we just multiply each outcome by how likely it is:

$$
\begin{aligned}
\sum_{i=0}^{100} i \operatorname{Pr}(X=i) & =100 \operatorname{Pr}(X=100)+80 \operatorname{Pr}(X=80)+\sum_{i=81}^{99} i \operatorname{Pr}(X=i) \\
& =(100)(0.2)+(80)(0.3)+\sum_{i=81}^{99} i \frac{0.5}{19}
\end{aligned}
$$

A Little More Formal Now. . .

Definition (Random Variable)

Definition (Random Variable)
A random variable is a variable in a randomized piece of code or
A random variable is a function from the sample space to the naturals.

A Little More Formal Now. . .

Definition (Random Variable)
A random variable is a variable in a randomized piece of code or
A random variable is a function from the sample space to the naturals.
Definition (Expected Value)
The expected value of a random variable $X: \Omega \rightarrow \mathbb{N}$ is the average value it takes on.

A Little More Formal Now. . .

Definition (Random Variable)
A random variable is a variable in a randomized piece of code or
A random variable is a function from the sample space to the naturals.

Definition (Expected Value)

The expected value of a random variable $X: \Omega \rightarrow \mathbb{N}$ is the average value it takes on. As we figured out above, we can calculate it with:

A Little More Formal Now. . .

Definition (Random Variable)
A random variable is a variable in a randomized piece of code or
A random variable is a function from the sample space to the naturals.

Definition (Expected Value)

The expected value of a random variable $X: \Omega \rightarrow \mathbb{N}$ is the average value it takes on. As we figured out above, we can calculate it with:

$$
\mathbb{E}[X]=\sum_{x \in \Omega} X(x) \operatorname{Pr}(X=x)=\sum_{n=0}^{\infty} n \operatorname{Pr}(X=n)
$$

The Expected Example

Let X be the riv. for the number of heads when we flip 2 coins with bias p. What is $\mathbb{E}[X]$?

The Expected Example

Let X be the r.v. for the number of heads when we flip 2 coins with bias p. What is $\mathbb{E}[X]$?

Proof.
By definition of expected value, we know $\mathbb{E}[X]=\sum_{k=0}^{\infty} k \operatorname{Pr}(X=k)$.

The Expected Example

Let X be the r.v. for the number of heads when we flip 2 coins with bias p. What is $\mathbb{E}[X]$?

Proof.
By definition of expected value, we know $\mathbb{E}[X]=\sum_{k=0}^{\infty} k \operatorname{Pr}(X=k)$.
We know that if $0 \leq k \leq n$, then

$$
\operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

The Expected Example

Let X be the r.v. for the number of heads when we flip 2 coins with bias p. What is $\mathbb{E}[X]$?

Proof.
By definition of expected value, we know $\mathbb{E}[X]=\sum_{k=0}^{\infty} k \operatorname{Pr}(X=k)$.
We know that if $0 \leq k \leq n$, then

$$
\operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

So,

The Expected Example

Let X be the r.v. for the number of heads when we flip 2 coins with bias p. What is $\mathbb{E}[X]$?

Proof.
By definition of expected value, we know $\mathbb{E}[X]=\sum_{k=0}^{\infty} k \operatorname{Pr}(X=k)$.
We know that if $0 \leq k \leq n$, then

$$
\operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

So,

$$
\mathbb{E}[X]=0\binom{2}{0} p^{0}(1-p)^{2-0}+1\binom{2}{1} p^{1}(1-p)^{2-1}+2\binom{2}{2} p^{2}(1-p)^{2-2}
$$

The Expected Example

Let X be the r.v. for the number of heads when we flip 2 coins with bias p. What is $\mathbb{E}[X]$?

Proof.
By definition of expected value, we know $\mathbb{E}[X]=\sum_{k=0}^{\infty} k \operatorname{Pr}(X=k)$.
We know that if $0 \leq k \leq n$, then

$$
\operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

So,

$$
\begin{aligned}
\mathbb{E}[X] & =0\binom{2}{0} p^{0}(1-p)^{2-0}+1\binom{2}{1} p^{1}(1-p)^{2-1}+2\binom{2}{2} p^{2}(1-p)^{2-2} \\
& =2 p(1-p)+2 p^{2}
\end{aligned}
$$

The Expected Example

Let X be the riv. for the number of heads when we flip 2 coins with bias p. What is $\mathbb{E}[X]$?

Proof.
By definition of expected value, we know $\mathbb{E}[X]=\sum_{k=0}^{\infty} k \operatorname{Pr}(X=k)$.
We know that if $0 \leq k \leq n$, then

$$
\operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

So,

$$
\begin{aligned}
\mathbb{E}[X] & =0\binom{2}{0} p^{0}(1-p)^{2-0}+1\binom{2}{1} p^{1}(1-p)^{2-1}+2\binom{2}{2} p^{2}(1-p)^{2-2} \\
& =2 p(1-p)+2 p^{2} \\
& =2 p
\end{aligned}
$$

Check Up!

Consider the following expectations:

- $\mathbb{E}[1313]$
- \mathbb{E} [getting HEADS on a coin flip]
- \mathbb{E} [number of HEADS from a coin flip given that the flip is HEADS] What are they?

Check Up!

Consider the following expectations:

- $\mathbb{E}[1313]$
- \mathbb{E} [getting HEADS on a coin flip]
- \mathbb{E} [number of HEADS from a coin flip given that the flip is HEADS] What are they?
- If 1313 is a r.v., then it must be the one that is always 1313 . So, $\mathbb{E}[1313]=1313$.

Consider the following expectations:

- $\mathbb{E}[1313]$
- \mathbb{E} [getting HEADS on a coin flip]
- \mathbb{E} [number of HEADS from a coin flip given that the flip is HEADS] What are they?

If 1313 is a r.v., then it must be the one that is always 1313 . So, $\mathbb{E}[1313]=1313$.

- THIS DOESN'T MAKE SENSE! We can only take the expectation of a r.v.-not an event!

Consider the following expectations:

- $\mathbb{E}[1313]$
- \mathbb{E} [getting HEADS on a coin flip]
- \mathbb{E} [number of HEADS from a coin flip given that the flip is HEADS] What are they?

If 1313 is a r.v., then it must be the one that is always 1313 . So, $\mathbb{E}[1313]=1313$.

- THIS DOESN'T MAKE SENSE! We can only take the expectation of a r.v.-not an event!
- It's 1, because we're told the coin flip is HEADS

PVA 323 has the following grading policy:
The midterm is worth 20% of the grade.

- The homework is worth 30% of the grade.

The final exam is worth 50% of the grade.

PVA 323 has the following grading policy:

- The midterm is worth 20% of the grade.
- The homework is worth 30% of the grade.
- The final exam is worth 50% of the grade.

Stupid Question: Supposing that m was the average on the midterm, h was the average on the homework, and f was the average on the final exam, how do you calculate the average for the course?

PVA 323 has the following grading policy:

- The midterm is worth 20% of the grade.
- The homework is worth 30% of the grade.

The final exam is worth 50% of the grade.
Stupid Question: Supposing that m was the average on the midterm, h was the average on the homework, and f was the average on the final exam, how do you calculate the average for the course?
Answer: $0.2 m+0.3 h+0.5 f$.

PVA 323 has the following grading policy:

- The midterm is worth 20% of the grade.
- The homework is worth 30% of the grade.
- The final exam is worth 50% of the grade.

Stupid Question: Supposing that m was the average on the midterm, h was the average on the homework, and f was the average on the final exam, how do you calculate the average for the course?
Answer: $0.2 m+0.3 h+0.5 f$.
Remember our interpretation of these exams as random variables?

PVA 323 has the following grading policy:

- The midterm is worth 20% of the grade.
- The homework is worth 30% of the grade.
- The final exam is worth 50% of the grade.

Stupid Question: Supposing that m was the average on the midterm, h was the average on the homework, and f was the average on the final exam, how do you calculate the average for the course?
Answer: $0.2 m+0.3 h+0.5 f$.
Remember our interpretation of these exams as random variables? What we're actually saying here is if G is the r.v. for a PVA 323 student's course grade,

PVA 323 has the following grading policy:

- The midterm is worth 20% of the grade.

The homework is worth 30% of the grade.

- The final exam is worth 50% of the grade.

Stupid Question: Supposing that m was the average on the midterm, h was the average on the homework, and f was the average on the final exam, how do you calculate the average for the course?
Answer: $0.2 m+0.3 h+0.5 f$.
Remember our interpretation of these exams as random variables? What we're actually saying here is if G is the r.v. for a PVA 323 student's course grade, and M, H, and F are the obvious r.v.'s, then:

PVA 323 has the following grading policy:

- The midterm is worth 20% of the grade.
- The homework is worth 30% of the grade.
- The final exam is worth 50% of the grade.

Stupid Question: Supposing that m was the average on the midterm, h was the average on the homework, and f was the average on the final exam, how do you calculate the average for the course?
Answer: $0.2 m+0.3 h+0.5 f$.
Remember our interpretation of these exams as random variables? What we're actually saying here is if G is the r.v. for a PVA 323 student's course grade, and M, H, and F are the obvious r.v.'s, then:

We know that $G=0.2 M+0.3 H+0.5 F$; so, we can conclude

PVA 323 has the following grading policy:

- The midterm is worth 20% of the grade.
- The homework is worth 30% of the grade.
- The final exam is worth 50% of the grade.

Stupid Question: Supposing that m was the average on the midterm, h was the average on the homework, and f was the average on the final exam, how do you calculate the average for the course?
Answer: $0.2 m+0.3 h+0.5 f$.
Remember our interpretation of these exams as random variables? What we're actually saying here is if G is the r.v. for a PVA 323 student's course grade, and M, H, and F are the obvious r.v.'s, then:

We know that $G=0.2 M+0.3 H+0.5 F$; so, we can conclude

$$
\mathbb{E}[G]=0.2 \mathbb{E}[M]+0.3 \mathbb{E}[H]+0.5 \mathbb{E}[F]
$$

PVA 323 has the following grading policy:

- The midterm is worth 20% of the grade.
- The homework is worth 30% of the grade.
- The final exam is worth 50% of the grade.

Stupid Question: Supposing that m was the average on the midterm, h was the average on the homework, and f was the average on the final exam, how do you calculate the average for the course?
Answer: $0.2 m+0.3 h+0.5 f$.
Remember our interpretation of these exams as random variables? What we're actually saying here is if G is the r.v. for a PVA 323 student's course grade, and M, H, and F are the obvious r.v.'s, then:

We know that $G=0.2 M+0.3 H+0.5 F$; so, we can conclude

$$
\mathbb{E}[G]=0.2 \mathbb{E}[M]+0.3 \mathbb{E}[H]+0.5 \mathbb{E}[F]
$$

This is incredibly powerful!

PVA 323 has the following grading policy:

- The midterm is worth 20% of the grade.
\square The homework is worth 30% of the grade.
- The final exam is worth 50% of the grade.

Stupid Question: Supposing that m was the average on the midterm, h was the average on the homework, and f was the average on the final exam, how do you calculate the average for the course?
Answer: $0.2 m+0.3 h+0.5 f$.
Remember our interpretation of these exams as random variables? What we're actually saying here is if G is the r.v. for a PVA 323 student's course grade, and M, H, and F are the obvious r.v.'s, then:

We know that $G=0.2 M+0.3 H+0.5 F$; so, we can conclude

$$
\mathbb{E}[G]=0.2 \mathbb{E}[M]+0.3 \mathbb{E}[H]+0.5 \mathbb{E}[F]
$$

This is incredibly powerful! To calculate the course average, we just added together other averages.

Linearity of Expectation

Definition (Linearity of Expectation)
If X, Y, and Z are r.v.'s such that $Z=X+Y$, then:

$$
\mathbb{E}[Z]=\mathbb{E}[X]+\mathbb{E}[Y]
$$

Linearity of Expectation

Definition (Linearity of Expectation)
If X, Y, and Z are r.v.'s such that $Z=X+Y$, then:

$$
\mathbb{E}[Z]=\mathbb{E}[X]+\mathbb{E}[Y]
$$

Generalizing a little, if we have $X=\sum_{i=1}^{n} X_{i}$, then

Linearity of Expectation

Definition (Linearity of Expectation)

If X, Y, and Z are r.v.'s such that $Z=X+Y$, then:

$$
\mathbb{E}[Z]=\mathbb{E}[X]+\mathbb{E}[Y]
$$

Generalizing a little, if we have $X=\sum_{i=1}^{n} X_{i}$, then

$$
\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]
$$

Definition (Linearity of Expectation)

If X, Y, and Z are r.v.'s such that $Z=X+Y$, then:

$$
\mathbb{E}[Z]=\mathbb{E}[X]+\mathbb{E}[Y]
$$

Generalizing a little, if we have $X=\sum_{i=1}^{n} X_{i}$, then

$$
\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]
$$

Definition (Indicator Random Variable)

Definition (Linearity of Expectation)

If X, Y, and Z are r.v.'s such that $Z=X+Y$, then:

$$
\mathbb{E}[Z]=\mathbb{E}[X]+\mathbb{E}[Y]
$$

Generalizing a little, if we have $X=\sum_{i=1}^{n} X_{i}$, then

$$
\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]
$$

Definition (Indicator Random Variable)

An indicator random variable "indicates" whether a particular event E happens or not.

Definition (Linearity of Expectation)

If X, Y, and Z are r.v.'s such that $Z=X+Y$, then:

$$
\mathbb{E}[Z]=\mathbb{E}[X]+\mathbb{E}[Y]
$$

Generalizing a little, if we have $X=\sum_{i=1}^{n} X_{i}$, then

$$
\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]
$$

Definition (Indicator Random Variable)

An indicator random variable "indicates" whether a particular event E happens or not. Usually, we define them via:

$$
X= \begin{cases}1 & \text { if BLAH happens } \\ 0 & \text { otherwise }\end{cases}
$$

Definition (Linearity of Expectation)

If X, Y, and Z are r.v.'s such that $Z=X+Y$, then:

$$
\mathbb{E}[Z]=\mathbb{E}[X]+\mathbb{E}[Y]
$$

Generalizing a little, if we have $X=\sum_{i=1}^{n} X_{i}$, then

$$
\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]
$$

Definition (Indicator Random Variable)

An indicator random variable "indicates" whether a particular event E happens or not. Usually, we define them via:

$$
X= \begin{cases}1 & \text { if BLAH happens } \\ 0 & \text { otherwise }\end{cases}
$$

They come up with Linearity of Expectation a lot!

There are n people at a party who have checked their hats in. At the end of the party, the hat-check clerk randomly gives them their hats back. What is the expected number of people who got their hat back?

There are n people at a party who have checked their hats in. At the end of the party, the hat-check clerk randomly gives them their hats back. What is the expected number of people who got their hat back?

Let X be the r.v. for the number of people who get their hat back.

There are n people at a party who have checked their hats in. At the end of the party, the hat-check clerk randomly gives them their hats back. What is the expected number of people who got their hat back?

Let X be the r.v. for the number of people who get their hat back. By definition, $\mathbb{E}[X]=\sum_{i=0}^{n} i \operatorname{Pr}(X=i)$.

There are n people at a party who have checked their hats in. At the end of the party, the hat-check clerk randomly gives them their hats back. What is the expected number of people who got their hat back?

Let X be the r.v. for the number of people who get their hat back. By definition, $\mathbb{E}[X]=\sum_{i=0}^{n} i \operatorname{Pr}(X=i)$. So, now we calculate $\operatorname{Pr}(X=i)$.

There are n people at a party who have checked their hats in. At the end of the party, the hat-check clerk randomly gives them their hats back. What is the expected number of people who got their hat back?

Let X be the r.v. for the number of people who get their hat back. By definition, $\mathbb{E}[X]=\sum_{i=0}^{n} i \operatorname{Pr}(X=i)$. So, now we calculate $\operatorname{Pr}(X=i)$. $\operatorname{Pr}(X=i)=$

There are n people at a party who have checked their hats in. At the end of the party, the hat-check clerk randomly gives them their hats back. What is the expected number of people who got their hat back?

Let X be the r.v. for the number of people who get their hat back. By definition, $\mathbb{E}[X]=\sum_{i=0}^{n} i \operatorname{Pr}(X=i)$. So, now we calculate $\operatorname{Pr}(X=i)$. $\operatorname{Pr}(X=i)=\binom{n}{i}$

There are n people at a party who have checked their hats in. At the end of the party, the hat-check clerk randomly gives them their hats back. What is the expected number of people who got their hat back?

Let X be the r.v. for the number of people who get their hat back. By definition, $\mathbb{E}[X]=\sum_{i=0}^{n} i \operatorname{Pr}(X=i)$. So, now we calculate $\operatorname{Pr}(X=i)$. $\operatorname{Pr}(X=i)=\binom{n}{i} \frac{1}{n}$

There are n people at a party who have checked their hats in. At the end of the party, the hat-check clerk randomly gives them their hats back. What is the expected number of people who got their hat back?

Let X be the r.v. for the number of people who get their hat back. By definition, $\mathbb{E}[X]=\sum_{i=0}^{n} i \operatorname{Pr}(X=i)$. So, now we calculate $\operatorname{Pr}(X=i)$. $\operatorname{Pr}(X=i)=\binom{n}{i} \frac{1}{n} \frac{1}{n-1} \cdots \frac{1}{n-i}$

There are n people at a party who have checked their hats in. At the end of the party, the hat-check clerk randomly gives them their hats back. What is the expected number of people who got their hat back?

Let X be the r.v. for the number of people who get their hat back. By definition, $\mathbb{E}[X]=\sum_{i=0}^{n} i \operatorname{Pr}(X=i)$. So, now we calculate $\operatorname{Pr}(X=i)$. $\operatorname{Pr}(X=i)=\binom{n}{i} \frac{1}{n} \frac{1}{n-1} \cdots \frac{1}{n-i} \operatorname{Pr}($ none of the others get their hats back $\left.)\right)$.

There are n people at a party who have checked their hats in. At the end of the party, the hat-check clerk randomly gives them their hats back. What is the expected number of people who got their hat back?

Let X be the r.v. for the number of people who get their hat back. By definition, $\mathbb{E}[X]=\sum_{i=0}^{n} i \operatorname{Pr}(X=i)$. So, now we calculate $\operatorname{Pr}(X=i)$. $\operatorname{Pr}(X=i)=\binom{n}{i} \frac{1}{n} \frac{1}{n-1} \cdots \frac{1}{n-i} \operatorname{Pr}($ none of the others get their hats back $\left.)\right)$. I don't want to do this any more. . . make it easier?

There are n people at a party who have checked their hats in. At the end of the party, the hat-check clerk randomly gives them their hats back. What is the expected number of people who got their hat back?

Let X be the r.v. for the number of people who get their hat back. By definition, $\mathbb{E}[X]=\sum_{i=0}^{n} i \operatorname{Pr}(X=i)$. So, now we calculate $\operatorname{Pr}(X=i)$.
$\operatorname{Pr}(X=i)=\binom{n}{i} \frac{1}{n} \frac{1}{n-1} \cdots \frac{1}{n-i} \operatorname{Pr}($ none of the others get their hats back $\left.)\right)$.
I don't want to do this any more. . . make it easier?

Let X be the r.v. for the number of people who get their hat back.

There are n people at a party who have checked their hats in. At the end of the party, the hat-check clerk randomly gives them their hats back. What is the expected number of people who got their hat back?

Let X be the r.v. for the number of people who get their hat back. By definition, $\mathbb{E}[X]=\sum_{i=0}^{n} i \operatorname{Pr}(X=i)$. So, now we calculate $\operatorname{Pr}(X=i)$.
$\operatorname{Pr}(X=i)=\binom{n}{i} \frac{1}{n} \frac{1}{n-1} \cdots \frac{1}{n-i} \operatorname{Pr}($ none of the others get their hats back $\left.)\right)$.
I don't want to do this any more. . . make it easier?

Let X be the r.v. for the number of people who get their hat back. Let X_{i} be the i.r.v. for the i th person getting his hat back.

There are n people at a party who have checked their hats in. At the end of the party, the hat-check clerk randomly gives them their hats back. What is the expected number of people who got their hat back?

Let X be the r.v. for the number of people who get their hat back. By definition, $\mathbb{E}[X]=\sum_{i=0}^{n} i \operatorname{Pr}(X=i)$. So, now we calculate $\operatorname{Pr}(X=i)$.
$\operatorname{Pr}(X=i)=\binom{n}{i} \frac{1}{n} \frac{1}{n-1} \cdots \frac{1}{n-i} \operatorname{Pr}($ none of the others get their hats back $\left.)\right)$.
I don't want to do this any more. . . make it easier?

Let X be the r.v. for the number of people who get their hat back. Let X_{i} be the i.r.v. for the i th person getting his hat back.
Note that $X=\sum_{i=1}^{n} X_{i}$, because each of the n people either get their hat back or not.

There are n people at a party who have checked their hats in. At the end of the party, the hat-check clerk randomly gives them their hats back. What is the expected number of people who got their hat back?

Let X be the r.v. for the number of people who get their hat back. By definition, $\mathbb{E}[X]=\sum_{i=0}^{n} i \operatorname{Pr}(X=i)$. So, now we calculate $\operatorname{Pr}(X=i)$.
$\operatorname{Pr}(X=i)=\binom{n}{i} \frac{1}{n} \frac{1}{n-1} \cdots \frac{1}{n-i} \operatorname{Pr}($ none of the others get their hats back $\left.)\right)$.
I don't want to do this any more. . . make it easier?

Let X be the r.v. for the number of people who get their hat back.
Let X_{i} be the i.r.v. for the i th person getting his hat back.
Note that $X=\sum_{i=1}^{n} X_{i}$, because each of the n people either get their hat back or not. Now, consider
$\mathbb{E}\left[X_{i}\right]=0 \operatorname{Pr}\left(X_{i}=0\right)+1 \operatorname{Pr}\left(X_{i}=1\right)=\operatorname{Pr}\left(X_{i}=1\right)=\frac{1}{n}$.

There are n people at a party who have checked their hats in. At the end of the party, the hat-check clerk randomly gives them their hats back. What is the expected number of people who got their hat back?

Let X be the r.v. for the number of people who get their hat back. By definition, $\mathbb{E}[X]=\sum_{i=0}^{n} i \operatorname{Pr}(X=i)$. So, now we calculate $\operatorname{Pr}(X=i)$.
$\operatorname{Pr}(X=i)=\binom{n}{i} \frac{1}{n} \frac{1}{n-1} \cdots \frac{1}{n-i} \operatorname{Pr}($ none of the others get their hats back) $)$.
I don't want to do this any more. . . make it easier?

Let X be the r.v. for the number of people who get their hat back.
Let X_{i} be the i.r.v. for the i th person getting his hat back.
Note that $X=\sum_{i=1}^{n} X_{i}$, because each of the n people either get their hat back or not. Now, consider
$\mathbb{E}\left[X_{i}\right]=0 \operatorname{Pr}\left(X_{i}=0\right)+1 \operatorname{Pr}\left(X_{i}=1\right)=\operatorname{Pr}\left(X_{i}=1\right)=\frac{1}{n}$.
So, $\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=\sum_{i=1}^{n} 1 / n=1$ by Linearity of Expectation.

What is the expected number of HEADS from flipping a coin (with bias p) n times?

What is the expected number of HEADS from flipping a coin (with bias p) n times? Let X be r.v. for the number of HEADS from flipping a coin (with bias p) n times.

What is the expected number of HEADS from flipping a coin (with bias p) n times? Let X be r.v. for the number of HEADS from flipping a coin (with bias p) n times.

$$
\text { We know } \operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \text {. }
$$

What is the expected number of HEADS from flipping a coin (with bias p) n times? Let X be r.v. for the number of HEADS from flipping a coin (with bias p) n times.

$$
\begin{aligned}
& \text { We know } \operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \text {. Putting this into our formula gives: } \\
& \mathbb{E}[X]=\sum_{i=0}^{n} i\binom{n}{k} p^{i}(1-p)^{n-i} .
\end{aligned}
$$

What is the expected number of HEADS from flipping a coin (with bias p) n times? Let X be r.v. for the number of HEADS from flipping a coin (with bias p) n times.

$$
\begin{aligned}
& \text { We know } \operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \text {. Putting this into our formula gives: } \\
& \mathbb{E}[X]=\sum_{i=0}^{n} i\binom{n}{k} p^{i}(1-p)^{n-i} \text {. Any ideas on how to simplify this mess? }
\end{aligned}
$$

What is the expected number of HEADS from flipping a coin (with bias p) n times? Let X be r.v. for the number of HEADS from flipping a coin (with bias p) n times.

$$
\begin{aligned}
& \text { We know } \operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \text {. Putting this into our formula gives: } \\
& \mathbb{E}[X]=\sum_{i=0}^{n} i\binom{n}{k} p^{i}(1-p)^{n-i} \text {. Any ideas on how to simplify this mess? }
\end{aligned}
$$

Linearity of Expectation to the rescue!

What is the expected number of HEADS from flipping a coin (with bias p) n times? Let X be r.v. for the number of HEADS from flipping a coin (with bias p) n times.

We know $\operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$. Putting this into our formula gives: $\mathbb{E}[X]=\sum_{i=0}^{n} i\binom{n}{k} p^{i}(1-p)^{n-i}$. Any ideas on how to simplify this mess?

Linearity of Expectation to the rescue!
Let X_{i} be the i.r.v. for the i th coin coming up HEADS.

What is the expected number of HEADS from flipping a coin (with bias p) n times? Let X be r.v. for the number of HEADS from flipping a coin (with bias p) n times.

We know $\operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$. Putting this into our formula gives: $\mathbb{E}[X]=\sum_{i=0}^{n} i\binom{n}{k} p^{i}(1-p)^{n-i}$. Any ideas on how to simplify this mess?

Linearity of Expectation to the rescue!
Let X_{i} be the i.r.v. for the i th coin coming up HEADS. We know $\mathbb{E}\left[X_{i}\right]=\operatorname{Pr}\left(X_{i}=1\right)=p$.

What is the expected number of HEADS from flipping a coin (with bias p) n times? Let X be r.v. for the number of HEADS from flipping a coin (with bias p) n times.

We know $\operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$. Putting this into our formula gives: $\mathbb{E}[X]=\sum_{i=0}^{n} i\binom{n}{k} p^{i}(1-p)^{n-i}$. Any ideas on how to simplify this mess?

Linearity of Expectation to the rescue!
Let X_{i} be the i.r.v. for the i th coin coming up HEADS. We know $\mathbb{E}\left[X_{i}\right]=\operatorname{Pr}\left(X_{i}=1\right)=p$. So, since $X=\sum_{i=1}^{n} X_{i}$, we know,

What is the expected number of HEADS from flipping a coin (with bias p) n times? Let X be r.v. for the number of HEADS from flipping a coin (with bias p) n times.

We know $\operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$. Putting this into our formula gives: $\mathbb{E}[X]=\sum_{i=0}^{n} i\binom{n}{k} p^{i}(1-p)^{n-i}$. Any ideas on how to simplify this mess?

Linearity of Expectation to the rescue!
Let X_{i} be the i.r.v. for the i th coin coming up HEADS. We know $\mathbb{E}\left[X_{i}\right]=\operatorname{Pr}\left(X_{i}=1\right)=p$. So, since $X=\sum_{i=1}^{n} X_{i}$, we know, by Linearity of Expectation, that $\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]$

What is the expected number of HEADS from flipping a coin (with bias p) n times? Let X be r.v. for the number of HEADS from flipping a coin (with bias p) n times.

We know $\operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$. Putting this into our formula gives: $\mathbb{E}[X]=\sum_{i=0}^{n} i\binom{n}{k} p^{i}(1-p)^{n-i}$. Any ideas on how to simplify this mess?

Linearity of Expectation to the rescue!
Let X_{i} be the i.r.v. for the i th coin coming up HEADS. We know $\mathbb{E}\left[X_{i}\right]=\operatorname{Pr}\left(X_{i}=1\right)=p$. So, since $X=\sum_{i=1}^{n} X_{i}$, we know, by Linearity of
Expectation, that $\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=\sum_{i=1}^{n} p=n p$.

Remember from last time, we mentioned that if $A_{1}, A_{2}, \ldots, A_{n}$ are disjoint events, then

$$
\operatorname{Pr}\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right)=\sum_{i=1}^{n} \operatorname{Pr}\left(A_{i}\right)
$$

Remember from last time, we mentioned that if $A_{1}, A_{2}, \ldots, A_{n}$ are disjoint events, then

$$
\operatorname{Pr}\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right)=\sum_{i=1}^{n} \operatorname{Pr}\left(A_{i}\right)
$$

Let A and B be events.

Remember from last time, we mentioned that if $A_{1}, A_{2}, \ldots, A_{n}$ are disjoint events, then

$$
\operatorname{Pr}\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right)=\sum_{i=1}^{n} \operatorname{Pr}\left(A_{i}\right)
$$

Let A and B be events. Note that $A \cap B$ and $A \cap \bar{B}$ are disjoint.

Remember from last time, we mentioned that if $A_{1}, A_{2}, \ldots, A_{n}$ are disjoint events, then

$$
\operatorname{Pr}\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right)=\sum_{i=1}^{n} \operatorname{Pr}\left(A_{i}\right)
$$

Let A and B be events. Note that $A \cap B$ and $A \cap \bar{B}$ are disjoint. So, $\operatorname{Pr}(A)=\operatorname{Pr}((A \cap B) \cup(A \cap \bar{B}))$

Remember from last time, we mentioned that if $A_{1}, A_{2}, \ldots, A_{n}$ are disjoint events, then

$$
\operatorname{Pr}\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right)=\sum_{i=1}^{n} \operatorname{Pr}\left(A_{i}\right)
$$

Let A and B be events. Note that $A \cap B$ and $A \cap \bar{B}$ are disjoint. So, $\operatorname{Pr}(A)=\operatorname{Pr}((A \cap B) \cup(A \cap \bar{B}))=\operatorname{Pr}(A \cap B)+\operatorname{Pr}(A \cap \bar{B})$.

Remember from last time, we mentioned that if $A_{1}, A_{2}, \ldots, A_{n}$ are disjoint events, then

$$
\operatorname{Pr}\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right)=\sum_{i=1}^{n} \operatorname{Pr}\left(A_{i}\right)
$$

Let A and B be events. Note that $A \cap B$ and $A \cap \bar{B}$ are disjoint. So, $\operatorname{Pr}(A)=\operatorname{Pr}((A \cap B) \cup(A \cap \bar{B}))=\operatorname{Pr}(A \cap B)+\operatorname{Pr}(A \cap \bar{B})$.
Using the definition of conditional probability, it follows that:

Remember from last time, we mentioned that if $A_{1}, A_{2}, \ldots, A_{n}$ are disjoint events, then

$$
\operatorname{Pr}\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right)=\sum_{i=1}^{n} \operatorname{Pr}\left(A_{i}\right)
$$

Let A and B be events. Note that $A \cap B$ and $A \cap \bar{B}$ are disjoint. So, $\operatorname{Pr}(A)=\operatorname{Pr}((A \cap B) \cup(A \cap \bar{B}))=\operatorname{Pr}(A \cap B)+\operatorname{Pr}(A \cap \bar{B})$.
Using the definition of conditional probability, it follows that:
Definition (Law of Total Probability)

$$
\operatorname{Pr}(A)=\operatorname{Pr}(A \mid B) \operatorname{Pr}(B)+\operatorname{Pr}(A \mid \bar{B}) \operatorname{Pr}(\bar{B})
$$

This can be very useful when calculating probabilities.

Remember from last time, we mentioned that if $A_{1}, A_{2}, \ldots, A_{n}$ are disjoint events, then

$$
\operatorname{Pr}\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right)=\sum_{i=1}^{n} \operatorname{Pr}\left(A_{i}\right)
$$

Let A and B be events. Note that $A \cap B$ and $A \cap \bar{B}$ are disjoint. So, $\operatorname{Pr}(A)=\operatorname{Pr}((A \cap B) \cup(A \cap \bar{B}))=\operatorname{Pr}(A \cap B)+\operatorname{Pr}(A \cap \bar{B})$.
Using the definition of conditional probability, it follows that:
Definition (Law of Total Probability)

$$
\operatorname{Pr}(A)=\operatorname{Pr}(A \mid B) \operatorname{Pr}(B)+\operatorname{Pr}(A \mid \bar{B}) \operatorname{Pr}(\bar{B})
$$

This can be very useful when calculating probabilities. It has an analog for expectation:

Remember from last time, we mentioned that if $A_{1}, A_{2}, \ldots, A_{n}$ are disjoint events, then

$$
\operatorname{Pr}\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right)=\sum_{i=1}^{n} \operatorname{Pr}\left(A_{i}\right)
$$

Let A and B be events. Note that $A \cap B$ and $A \cap \bar{B}$ are disjoint. So, $\operatorname{Pr}(A)=\operatorname{Pr}((A \cap B) \cup(A \cap \bar{B}))=\operatorname{Pr}(A \cap B)+\operatorname{Pr}(A \cap \bar{B})$.
Using the definition of conditional probability, it follows that:
Definition (Law of Total Probability)

$$
\operatorname{Pr}(A)=\operatorname{Pr}(A \mid B) \operatorname{Pr}(B)+\operatorname{Pr}(A \mid \bar{B}) \operatorname{Pr}(\bar{B})
$$

This can be very useful when calculating probabilities. It has an analog for expectation: Let X be a r.v.

Remember from last time, we mentioned that if $A_{1}, A_{2}, \ldots, A_{n}$ are disjoint events, then

$$
\operatorname{Pr}\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right)=\sum_{i=1}^{n} \operatorname{Pr}\left(A_{i}\right)
$$

Let A and B be events. Note that $A \cap B$ and $A \cap \bar{B}$ are disjoint. So, $\operatorname{Pr}(A)=\operatorname{Pr}((A \cap B) \cup(A \cap \bar{B}))=\operatorname{Pr}(A \cap B)+\operatorname{Pr}(A \cap \bar{B})$.
Using the definition of conditional probability, it follows that:
Definition (Law of Total Probability)

$$
\operatorname{Pr}(A)=\operatorname{Pr}(A \mid B) \operatorname{Pr}(B)+\operatorname{Pr}(A \mid \bar{B}) \operatorname{Pr}(\bar{B})
$$

This can be very useful when calculating probabilities. It has an analog for expectation: Let X be a r.v.

Definition (Law of Total Expectation)

$$
\mathbb{E}[X]=\mathbb{E}[X \mid A] \operatorname{Pr}(A)+\mathbb{E}[X \mid \bar{A}] \operatorname{Pr}(\bar{A})
$$

```
1 X = 1
2 while FlipCoin(p) != HEADS:
X X++
```

Let X be the r.v. for how many loop iterations the code gets through.

```
1 X = 1
2 while FlipCoin(p) != HEADS:
X X++
```

Let X be the r.v. for how many loop iterations the code gets through.
Let H be the event that the next coin flip comes up HEADS.

```
1 X = 1
2 while FlipCoin(p) != HEADS:
X X++
```

Let X be the r.v. for how many loop iterations the code gets through.
Let H be the event that the next coin flip comes up HEADS. $\mathbb{E}[X]=\mathbb{E}[X \mid H] \operatorname{Pr}(H)+\mathbb{E}[X \mid \bar{H}] \operatorname{Pr}(\bar{H})$
[The coin has bias p]
[If we get HEADS, we're done!]
[Linearity of Expectation]
[Simplifying]
[Solve for $\mathbb{E}[X]]$

```
1 X = 1
2 while FlipCoin(p) != HEADS:
X X++
```

Let X be the r.v. for how many loop iterations the code gets through.
Let H be the event that the next coin flip comes up HEADS. $\mathbb{E}[X]=\mathbb{E}[X \mid H] \operatorname{Pr}(H)+\mathbb{E}[X \mid \bar{H}] \operatorname{Pr}(\bar{H}) \quad$ [Law of Total Expectation]
[The coin has bias p] [If we get HEADS, we're done!] $=p+\mathbb{E}[X+1](1-p)$ $=p+\mathbb{E}[X](1-p)+\mathbb{E}[1](1-p)$ $=1+(1-p) \mathbb{E}[X]$ [Linearity of Expectation] [Simplifying] [Solve for $\mathbb{E}[X]]$ * - Since we know we got TAILS once, we've flipped 1 coin. But ignoring that flip, we're at the same place we started at! So, $\mathbb{E}|X| H \mid=\mathbb{E}[X+1]$

```
1 X = 1
2 while FlipCoin(p) != HEADS:
X X++
```

Let X be the r.v. for how many loop iterations the code gets through.
Let H be the event that the next coin flip comes up HEADS. $\mathbb{E}[X]=\mathbb{E}[X \mid H] \operatorname{Pr}(H)+\mathbb{E}[X \mid \bar{H}] \operatorname{Pr}(\bar{H}) \quad$ [Law of Total Expectation]

$$
=\mathbb{E}[X \mid H] p+\mathbb{E}[X \mid \bar{H}](1-p)
$$

[The coin has bias p]
[If we get HEADS, we're done!]
$=p+\mathbb{E}[X+1](1-p)$
$=p+\mathbb{E}[X](1-p)+\mathbb{E}[1](1-p)$
[Linearity of Expectation]
$=1+(1-p) \mathbb{E}[X]$
[Simplifying]
[Solve for $\mathbb{E}[X]]$ * - Since we know we got TAILS once, we've flipped 1 coin. But ignoring that flip, we're at the same place we started at! So, $\mathbb{E}|X| H \mid=\mathbb{E}[X+1]$

```
1 X = 1
2 while FlipCoin(p) != HEADS:
X X++
```

Let X be the r.v. for how many loop iterations the code gets through.
Let H be the event that the next coin flip comes up HEADS. $\mathbb{E}[X]=\mathbb{E}[X \mid H] \operatorname{Pr}(H)+\mathbb{E}[X \mid \bar{H}] \operatorname{Pr}(\bar{H}) \quad$ [Law of Total Expectation]

$$
=\mathbb{E}[X \mid H] p+\mathbb{E}[X \mid \bar{H}](1-p) \quad[\text { The coin has bias } p]
$$

```
1 X = 1
2 while FlipCoin(p) != HEADS:
X X++
```

Let X be the r.v. for how many loop iterations the code gets through.
Let H be the event that the next coin flip comes up HEADS. $\mathbb{E}[X]=\mathbb{E}[X \mid H] \operatorname{Pr}(H)+\mathbb{E}[X \mid \bar{H}] \operatorname{Pr}(\bar{H}) \quad$ [Law of Total Expectation] $=\mathbb{E}[X \mid H] p+\mathbb{E}[X \mid \bar{H}](1-p) \quad$ [The coin has bias p]

$$
=p+\mathbb{E}[X \mid \bar{H}](1-p)
$$

[Linearity of Expectation] [Simplifying]

```
1 X = 1
2 while FlipCoin(p) != HEADS:
X X++
```

Let X be the r.v. for how many loop iterations the code gets through.
Let H be the event that the next coin flip comes up HEADS. $\mathbb{E}[X]=\mathbb{E}[X \mid H] \operatorname{Pr}(H)+\mathbb{E}[X \mid \bar{H}] \operatorname{Pr}(\bar{H}) \quad$ [Law of Total Expectation]

$$
=\mathbb{E}[X \mid H] p+\mathbb{E}[X \mid \bar{H}](1-p) \quad[\text { The coin has bias } p]
$$

$$
=p+\mathbb{E}[X \mid \bar{H}](1-p) \quad \text { [If we get HEADS, we're done!] }
$$

$=1+(1-p) \mathbb{E}[X]$
[Simplifying]
[Solve for $\mathbb{E}[X]]$

```
1 X = 1
2 while FlipCoin(p) != HEADS:
X X++
```

Let X be the r.v. for how many loop iterations the code gets through.
Let H be the event that the next coin flip comes up HEADS. $\mathbb{E}[X]=\mathbb{E}[X \mid H] \operatorname{Pr}(H)+\mathbb{E}[X \mid \bar{H}] \operatorname{Pr}(\bar{H}) \quad$ [Law of Total Expectation] $=\mathbb{E}[X \mid H] p+\mathbb{E}[X \mid \bar{H}](1-p) \quad$ [The coin has bias $p]$
$=p+\mathbb{E}[X \mid \bar{H}](1-p) \quad$ [If we get HEADS, we're done!]

$$
=p+\mathbb{E}[X+1](1-p)
$$

```
1 X = 1
2 while FlipCoin(p) != HEADS:
X X++
```

Let X be the r.v. for how many loop iterations the code gets through.
Let H be the event that the next coin flip comes up HEADS. $\mathbb{E}[X]=\mathbb{E}[X \mid H] \operatorname{Pr}(H)+\mathbb{E}[X \mid \bar{H}] \operatorname{Pr}(\bar{H}) \quad$ [Law of Total Expectation] $=\mathbb{E}[X \mid H] p+\mathbb{E}[X \mid \bar{H}](1-p) \quad$ [The coin has bias p]
$=p+\mathbb{E}[X \mid \bar{H}](1-p) \quad$ [If we get HEADS, we're done!]
$=p+\mathbb{E}[X+1](1-p) \quad[\star]$
[Linearity of Expectation]
[Simplifying]
[Solve for $\mathbb{E}[X]$ * - Since we know we got TAILS once, we've flipped 1 coin. But ignoring that flip, we're at the same place we started at! So, $\mathbb{E}[X \mid \bar{H}]=\mathbb{E}[X+1]$

```
1 X = 1
2 while FlipCoin(p) != HEADS:
X X++
```

Let X be the r.v. for how many loop iterations the code gets through.
Let H be the event that the next coin flip comes up HEADS. $\mathbb{E}[X]=\mathbb{E}[X \mid H] \operatorname{Pr}(H)+\mathbb{E}[X \mid \bar{H}] \operatorname{Pr}(\bar{H}) \quad$ [Law of Total Expectation] $=\mathbb{E}[X \mid H] p+\mathbb{E}[X \mid \bar{H}](1-p) \quad$ [The coin has bias p]
$=p+\mathbb{E}[X \mid \bar{H}](1-p) \quad$ [If we get HEADS, we're done!]
$=p+\mathbb{E}[X+1](1-p) \quad[\star]$
$=p+\mathbb{E}[X](1-p)+\mathbb{E}[1](1-p)$
[Linearity of Expectation]
[Simplifying]
[Solve for $\mathbb{E}[X]$]
\star - Since we know we got TAILS once, we ve flipped 1 coin. But ignoring that flip, we're at the same place we started at! So, $\mathbb{E}[X \mid \bar{H}]=\mathbb{E}[X+1]$.

```
1 X = 1
2 while FlipCoin(p) != HEADS:
X X++
```

Let X be the r.v. for how many loop iterations the code gets through.
Let H be the event that the next coin flip comes up HEADS. $\mathbb{E}[X]=\mathbb{E}[X \mid H] \operatorname{Pr}(H)+\mathbb{E}[X \mid \bar{H}] \operatorname{Pr}(\bar{H}) \quad$ [Law of Total Expectation] $=\mathbb{E}[X \mid H] p+\mathbb{E}[X \mid \bar{H}](1-p) \quad$ [The coin has bias p]
$=p+\mathbb{E}[X \mid \bar{H}](1-p) \quad$ [If we get HEADS, we're done!]
$=p+\mathbb{E}[X+1](1-p) \quad[\star]$
$=p+\mathbb{E}[X](1-p)+\mathbb{E}[1](1-p) \quad$ [Linearity of Expectation]
[Simplifying]
[Solve for $\mathbb{E}[X]$] * - Since we know we got TAILS once, we've flipped I coin. But ignoring that flip, we're at the same place we started at! So, $\mathbb{E}[X \mid \bar{H}]=\mathbb{E}[X+1]$

```
1 X = 1
2 while FlipCoin(p) != HEADS:
X X++
```

Let X be the r.v. for how many loop iterations the code gets through.
Let H be the event that the next coin flip comes up HEADS. $\mathbb{E}[X]=\mathbb{E}[X \mid H] \operatorname{Pr}(H)+\mathbb{E}[X \mid \bar{H}] \operatorname{Pr}(\bar{H}) \quad$ [Law of Total Expectation] $=\mathbb{E}[X \mid H] p+\mathbb{E}[X \mid \bar{H}](1-p) \quad$ [The coin has bias p]
$=p+\mathbb{E}[X \mid \bar{H}](1-p) \quad$ [If we get HEADS, we're done!]
$=p+\mathbb{E}[X+1](1-p) \quad[\star]$
$=p+\mathbb{E}[X](1-p)+\mathbb{E}[1](1-p) \quad$ [Linearity of Expectation]
$=1+(1-p) \mathbb{E}[X]$
[Simplifying]
[Solve for $\mathbb{E}[X]$] * - Since we know we got TAILS once, we've mipped 1 coin. But ignoring that flip, we're at the same place we started at! So, $\mathbb{E}[X \mid \bar{H}]=\mathbb{E}[X+1]$.

```
1 X = 1
2 while FlipCoin(p) != HEADS:
X X++
```

Let X be the r.v. for how many loop iterations the code gets through.
Let H be the event that the next coin flip comes up HEADS. $\mathbb{E}[X]=\mathbb{E}[X \mid H] \operatorname{Pr}(H)+\mathbb{E}[X \mid \bar{H}] \operatorname{Pr}(\bar{H}) \quad$ [Law of Total Expectation] $=\mathbb{E}[X \mid H] p+\mathbb{E}[X \mid \bar{H}](1-p) \quad$ [The coin has bias p]

$$
=p+\mathbb{E}[X \mid \bar{H}](1-p)
$$

[If we get HEADS, we're done!]

$$
=p+\mathbb{E}[X+1](1-p)
$$

[*]

$$
=p+\mathbb{E}[X](1-p)+\mathbb{E}[1](1-p)
$$

[Linearity of Expectation]

$$
=1+(1-p) \mathbb{E}[X]
$$

[Simplifying]

```
1 X = 1
2 while FlipCoin(p) != HEADS:
X X++
```

Let X be the r.v. for how many loop iterations the code gets through.
Let H be the event that the next coin flip comes up HEADS. $\mathbb{E}[X]=\mathbb{E}[X \mid H] \operatorname{Pr}(H)+\mathbb{E}[X \mid \bar{H}] \operatorname{Pr}(\bar{H}) \quad$ [Law of Total Expectation] $=\mathbb{E}[X \mid H] p+\mathbb{E}[X \mid \bar{H}](1-p) \quad$ [The coin has bias p]

$$
=p+\mathbb{E}[X \mid \bar{H}](1-p)
$$

[If we get HEADS, we're done!]

$$
\begin{equation*}
=p+\mathbb{E}[X+1](1-p) \tag{*}
\end{equation*}
$$

$$
=p+\mathbb{E}[X](1-p)+\mathbb{E}[1](1-p)
$$

[Linearity of Expectation]

$$
=1+(1-p) \mathbb{E}[X]
$$

[Simplifying]

$$
=\frac{1}{p}
$$

[Solve for $\mathbb{E}[X]]$ * - Since we know we got TAILS once, we've flipped 1 coin. But ignoring that flip, we're at the same place we started at! So, $\mathbb{E}[X \mid \bar{H}]=\mathbb{E}[X+1]$

```
1 X = 1
2 while FlipCoin(p) != HEADS:
X X++
```

Let X be the r.v. for how many loop iterations the code gets through.
Let H be the event that the next coin flip comes up HEADS. $\mathbb{E}[X]=\mathbb{E}[X \mid H] \operatorname{Pr}(H)+\mathbb{E}[X \mid \bar{H}] \operatorname{Pr}(\bar{H}) \quad$ [Law of Total Expectation] $=\mathbb{E}[X \mid H] p+\mathbb{E}[X \mid \bar{H}](1-p) \quad$ [The coin has bias p]

$$
=p+\mathbb{E}[X \mid \bar{H}](1-p)
$$

[If we get HEADS, we're done!]

$$
=p+\mathbb{E}[X+1](1-p)
$$

$$
=p+\mathbb{E}[X](1-p)+\mathbb{E}[1](1-p)
$$

[Linearity of Expectation]

$$
=1+(1-p) \mathbb{E}[X]
$$

[Simplifying]

$$
=\frac{1}{p}
$$

[Solve for $\mathbb{E}[X]$]

* - Since we know we got TAILS once, we ve flipped 1 coin. But ignoring that flip, we're at the same place we started at! So, $\mathbb{E}[X \mid \bar{H}]=\mathbb{E}[X+1]$.

```
1 X = 1
2 while FlipCoin(p) != HEADS:
X X++
```

Let X be the r.v. for how many loop iterations the code gets through.
Let H be the event that the next coin flip comes up HEADS.

$$
\mathbb{E}[X]=\mathbb{E}[X \mid H] \operatorname{Pr}(H)+\mathbb{E}[X \mid \bar{H}] \operatorname{Pr}(\bar{H}) \quad \text { [Law of Total Expectation] }
$$

$$
=\mathbb{E}[X \mid H] p+\mathbb{E}[X \mid \bar{H}](1-p) \quad[\text { The coin has bias } p]
$$

$$
=p+\mathbb{E}[X \mid \bar{H}](1-p)
$$

[If we get HEADS, we're done!]

$$
=p+\mathbb{E}[X+1](1-p)
$$

$$
=p+\mathbb{E}[X](1-p)+\mathbb{E}[1](1-p)
$$

[Linearity of Expectation]

$$
=1+(1-p) \mathbb{E}[X]
$$

[Simplifying]

$$
=\frac{1}{p}
$$

[Solve for $\mathbb{E}[X]$]
\star - Since we know we got TAILS once, we've flipped 1 coin. But ignoring that flip, we're at the same place we started at! So, $\mathbb{E}[X \mid \bar{H}]=\mathbb{E}[X+1]$.

