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Some Code 1

Consider the following piece of code:

1 while FlipCoin() ≠ HEADS:
2 print "Hello!"

Does it terminate?

Despite the answer seeming like an obvious “almost certainly”, we don’t
really have the tools to give a real answer. . .

That’s what today is about!

To drive the point home, we are going to only use probability as a way of
analyzing code with randomized components.
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Probability Primitives 2

We will always assume we have the following random primitives:
FlipCoin(p) returns HEADS with probability p and TAILS otherwise.
RollDie(N) returns x ∈ [N] with probability 1/N.



Definitions 3

Suppose we have a piece of random code R. We want to be able to
reason about R formally

; so, we use the following definitions:

Definition (Outcome)
An outcome for R is a sequence of values for all random calls in R. For
example, if our code is

1 c = FlipCoin(1/2)
2 d = RollDie(2)
3
4 if c == HEADS: c = 1
5 else: c = 2
6
7 if c == d: print c
8 else: print "Failure!"

The possible outcomes are:

(HEADS,1),(HEADS,2),(TAILS,1),(TAILS,2)
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More Definitions 4

Suppose we have a piece of random code R. We want to be able to
reason about R formally; so, we use the following definitions:

Definition (Outcome)
An outcome for R is a sequence of values for all random calls in R.

Definition (Sample Space)

The Sample Space of R is the set of all possible outcomes of running R.
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Even More Definitions 5

Definition (Event)
An event is a subset of the sample space.

We call these events, because
the represent things that can happen. Consider the code from before:

1 c = FlipCoin(1/2)
2 d = RollDie(2)
3
4 if c == HEADS: c = 1
5 else: c = 2
6
7 if c == d: print c
8 else: print "Failure!"

Here’s some events:
The code prints “Failure!”
{(HEADS,2),(TAILS,1)}
The code halts.
{(HEADS,1),(HEADS,2),(TAILS,1),(TAILS,2)}
The coin flip gives HEADS.
{(HEADS,1),(HEADS,2)}
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Probability 6

Definition (Probability)
Let S be a sample space and E ⊆ S be an event. Then, we say Pr(E) is
the probability of E.

Some facts about Pr(E):
Pr(S) = 1
0 ≤ Pr(E) ≤ 1
If E1,E2, . . . ,En ⊆ S and are pairwise disjoint, then

Pr(E1∪E2∪⋯∪En) =
n

∑
i=1

Pr(Ei)

Okay, enough of that. Let’s do some problems!
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Gambling Problem(s) 7

One of the TAs has a gambling problem. They make all of the following
bets with Adam:

I bet a coin will come up HEADS.
I bet a six-sided die will be even.
I bet if each of us rolls a four-sided die, the sum will be 4.
I bet if I roll a four-sided die, and you roll a die with that many
sides, the result will be even.

Which of these bets has a more than 50% chance of paying off?

The first two are relatively easy to analyze:
I bet a coin will come up HEADS.
Pr(HEADS) = 1/2
I bet a six-sided die will be even.
Pr(even roll) = 3/6 = 1/2
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Gambling Problem(s) 8

“I bet if each of us rolls a four-sided die, the sum will be 4.”

1 ta_die = RollDie(4)
2 adam_die = RollDie(4)
3 if ta_die + adam_die == 4:
4 print "TA Wins!"
5 else:
6 print "Adam Wins!"

RollDie(4)

RollDie(4)

(4,4)
1/16

(4,3)
1/16

(4,2)
1/16

(4,1)
1/16

1 2 3 4

RollDie(4)

(3,4)
1/16

(3,3)
1/16

(3,2)
1/16
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1/16
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(2,4)
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(2,2)
1/16

(2,1)
1/16

1 2 3 4

RollDie(4)

(1,4)
1/16

(1,3)
1/16

(1,2)
1/16

(1,1)
1/16

1 2 3 4

1 2 3 4

Pr(sum is 4) = Pr({(1,3),(2,2),(3,1)}) = 3
16
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Gambling Problem(s) 9

“I bet if I roll a four-sided die, and you roll a die with that many sides,
the result will be even.”

1 ta_die = RollDie(4)
2 result = RollDie(ta_die)
3 if result % 2 == 0:
4 print "TA Wins!"
5 else:
6 print "Adam Wins!"
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RollDie(1)

(1,1)
(1/4)⋅(1)

1

1 2 3 4

Pr(result is even) = Pr({(2,2),(3,2),(4,2),(4,4)}) = 1
8
+ 1

12
+ 1

8
= 1

3



Gambling Problem(s) 9

“I bet if I roll a four-sided die, and you roll a die with that many sides,
the result will be even.”

1 ta_die = RollDie(4)
2 result = RollDie(ta_die)
3 if result % 2 == 0:
4 print "TA Wins!"
5 else:
6 print "Adam Wins!"

RollDie(4)

RollDie(4)

(4,4)
(1/4)⋅(1/4)

(4,3)
(1/4)⋅(1/4)

(4,2)
(1/4)⋅(1/4)

(4,1)
(1/4)⋅(1/4)

1 2 3 4

RollDie(3)

(3,3)
(1/4)⋅(1/3)

(3,2)
(1/4)⋅(1/3)

(3,1)
(1/4)⋅(1/3)

1 2 3

RollDie(2)

(2,2)
(1/4)⋅(1/2)

(2,1)
(1/4)⋅(1/2)

1 2

RollDie(1)

(1,1)
(1/4)⋅(1)

1

1 2 3 4

Pr(result is even) = Pr({(2,2),(3,2),(4,2),(4,4)}) = 1
8
+ 1

12
+ 1

8
= 1

3



Gambling Problem(s) 9

“I bet if I roll a four-sided die, and you roll a die with that many sides,
the result will be even.”

1 ta_die = RollDie(4)
2 result = RollDie(ta_die)
3 if result % 2 == 0:
4 print "TA Wins!"
5 else:
6 print "Adam Wins!"

RollDie(4)

RollDie(4)

(4,4)
(1/4)⋅(1/4)

(4,3)
(1/4)⋅(1/4)

(4,2)
(1/4)⋅(1/4)

(4,1)
(1/4)⋅(1/4)

1 2 3 4

RollDie(3)

(3,3)
(1/4)⋅(1/3)

(3,2)
(1/4)⋅(1/3)

(3,1)
(1/4)⋅(1/3)

1 2 3

RollDie(2)

(2,2)
(1/4)⋅(1/2)

(2,1)
(1/4)⋅(1/2)

1 2

RollDie(1)

(1,1)
(1/4)⋅(1)

1

1 2 3 4

Pr(result is even) = Pr({(2,2),(3,2),(4,2),(4,4)}) = 1
8
+ 1

12
+ 1

8
= 1

3



Gambling Problem(s) 9

“I bet if I roll a four-sided die, and you roll a die with that many sides,
the result will be even.”

1 ta_die = RollDie(4)
2 result = RollDie(ta_die)
3 if result % 2 == 0:
4 print "TA Wins!"
5 else:
6 print "Adam Wins!"

RollDie(4)

RollDie(4)

(4,4)
(1/4)⋅(1/4)

(4,3)
(1/4)⋅(1/4)

(4,2)
(1/4)⋅(1/4)

(4,1)
(1/4)⋅(1/4)

1 2 3 4

RollDie(3)

(3,3)
(1/4)⋅(1/3)

(3,2)
(1/4)⋅(1/3)

(3,1)
(1/4)⋅(1/3)

1 2 3

RollDie(2)

(2,2)
(1/4)⋅(1/2)

(2,1)
(1/4)⋅(1/2)

1 2

RollDie(1)

(1,1)
(1/4)⋅(1)

1

1 2 3 4

Pr(result is even) = Pr({(2,2),(3,2),(4,2),(4,4)}) = 1
8
+ 1

12
+ 1

8
= 1

3



I be Flippin’ 10

What is the probability that 1313 flips of a fair coin are all HEADS?

Answer: Each flip has probability 1/2 of coming up heads; so,
multiplying them all together, we get ( 1

2)
1313.

Why did we multiply them together? What allowed us to do that?
We will come back to this argument later when we have more powerful
machinery.

More generally: The probability of any sequence of 1313 flips of a fair
coin is ( 1

2)
1313. They are all equally likely!
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Dating Service 11

A dating service has a 1/2 probability of each couple it matches working
out. Suppose that the dating service matches 1313 couples.

What is the probability that exactly 13 couples work out?
First, model it as code:

1 good_matches = 0
2 for i=1 to 1313:
3 if FlipCoin(1/2) == HEADS:
4 good_matches++
5 if good_matches == 13:
6 print "Yay!"

Let E be the event “the program prints “Yay!””.
The sample space, S = {HEADS,TAILS}1313.
Every outcome is equally likely, because we showed it above!

So, Pr(E) = ∣E ∣∣S∣ . (Take the number of ways to do what we want and

divide by the number of outcomes.)
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Dating Service 12

A dating service has a 1/2 probability of each couple it matches working
out. Suppose that the dating service matches 1313 couples.
What is the probability that exactly 13 couples work out?
First, model it as code:

1 good_matches = 0
2 for i=1 to 1313:
3 if FlipCoin(1/2) == HEADS:
4 good_matches++
5 if good_matches == 13:
6 print "Yay!"

Let E be the event “the program prints “Yay!””.
The sample space, S = {HEADS,TAILS}1313.
Every outcome is equally likely, because we showed it above!

So, Pr(E) = ∣E ∣∣S∣ =
(1313

13 )
21313 .



Happy Birthday! 13

How many people do we need before there’s a 50% chance that two of
them share a birthday?

It’s actually only 23! Let’s prove it:
Let S be the sample space. We have 23 people each with one of 366
birthdays; so, the outcomes are length 23 strings of birthdays.
Let E be the event that at least two people have the same birthday. If we
can calculate ∣E ∣ and ∣S∣, we’re done.

Since ∣E ∣ is hard to count, we count ∣E ∣ instead! E is the event that no
two people share a birthday. In other words, the event that the string
has no duplicate entries. Using the Rule of Product, we see that

∣E ∣ = (366)(365)⋯(344)

We also know that ∣S∣ = 36623 (also by the Rule of Product). Then,
∣E∣
∣S∣ = 0.494 So,

∣E ∣
∣S∣ = 0.506
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Conditional Probability 14

It is sometimes useful to discuss how often an event A occurs assuming
that another event B has already occurred.

Definition (Conditional Probability)
Pr(A ∣ B) is pronounced “the probability of A given B”, and it’s defined as:

Pr(A ∣ B) = Pr(A∩B)
Pr(B)

Think of Pr(A ∣ B) as restricting the sample space to B and considering
how often A occurs.
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Dice, Again 15

Suppose we roll a black die and a white die. What is the probability that
the white die is 1 given that the sum is 7?

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

We can calculate this two ways:

Way 1: Let W be the event that the white die is 1 and S be the event
that the sum is 7. We see that Pr(S) = 6

36 and Pr(S∩W) = 1
36 . Using the

formula for conditional probability, we get Pr(W ∣ S) =
1
36
6
36
= 1

6 .

Way 2: If we restrict our sample space to the six outcomes where the
sum is 7, only one of them has the white die as 1. So, the probability
we’re looking for is 1

6 .
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(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

We can calculate this two ways:

Way 1: Let W be the event that the white die is 1 and S be the event
that the sum is 7. We see that Pr(S) = 6

36 and Pr(S∩W) = 1
36 . Using the

formula for conditional probability, we get Pr(W ∣ S) =
1
36
6
36
= 1

6 .

Way 2: If we restrict our sample space to the six outcomes where the
sum is 7, only one of them has the white die as 1. So, the probability
we’re looking for is 1

6 .



Golden Coins 16

We have three bags with coins: one has two gold coins, one has two
silver coins, and the third has one gold coin and one silver coin.

We randomly choose one of the bags, and we randomly select a coin
from the bag. It turns out to be gold.
What is the probability that the other coin in that bag is gold?

Let G1 be the event that the coin we chose first is gold. Let G2 be the
event that the second chosen coin is gold. The problem is asking us to
find Pr(G2 ∣G1):

Pr(G1) = 3/6 = 1/2 (three of the six coins are gold)
Pr(G1∩G2) = 1/3 (the coins must be in the gold-gold bag)
Pr(G2 ∣G1) = Pr(G1∩G2)

Pr(G1)
= 2

3
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Independence 17

Definition (Independence)
We say that two events A and B are independent iff

Pr(A∩B) = Pr(A)Pr(B)

Here’s an example:
Let CP be the event that Pete comes to 98-000 class. Let CS be the
event that Sandy comes to 98-000 class. Empirically, we know that:

Pr(CP) = 1
Pr(CS) = 1

8
Pr(CP∩CS) = 1

8
Since 1

8 =
1
8 , Pr(CP) and Pr(CS) are independent!

What does this mean?
Tempting Answer: Pete and Sandy’s decisions to go to class aren’t
reliant on each other.
In Actuality: There are a total of 8 sessions of 98-000. Sandy met Pete
at the first class which they both attended. For all future sessions, Pete
took notes for Sandy, and she never showed up again.
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Moving Backwards 18

What is the probability that 1313 flips of a fair coin are all HEADS?

1 num_heads = 0
2 for i=1 to 1313:
3 if FlipCoin(1/2) == HEADS:
4 num_heads++
5 if num_heads == 1313:
6 print "Yay!"

Let Ci (for 1 ≤ i ≤ 1313) be the event that the ith coin flip is HEADS.
We see that none of the results of the coin flips in the procedure

interact with each other; so, each of them is independent. It follows that

Pr(
1313
⋂
i=1

Ci) =
1313

∏
i=1

Pr(Ci) = (
1
2
)

1313
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Back To The Beginning 19

1 while FlipCoin() ≠ HEADS:
2 print "Hello!"

Does this code terminate?
Let E be the event that the code terminates.

Note that if Ei is the event
that the code terminates on the ith run through the loop, we have:

E =
∞

⋃
i=0

Ei

Then, we know Pr(E) = Pr(⋃∞i=0 Ei) =∑∞i=1 Pr(Ei). Note that Pr(Ei) is
the probability that the code does not terminate on the first i−1
iterations and does on the ith iteration. Then, Pr(Ei) = ( 1

2)
i. So,

Pr(E) =
∞

∑
i=1
(1

2
)

i
= 1

1− 1
2

−1 = 1
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