
Mathematical Foundations
of Computing

CS
13

Adam Blank Spring 2023

CS 13: Mathematical Foundations of Computing

Lecture 12: Huffman Compression

Broken Code

dictionary = {0: “A”, 01: “B”, 10: “C”}

0010010
0 0 10 01 0
0 01 0 01 0
0 01 0 0 10

Prefix-Free Code

dictionary = {0: “A”, 10: “B”, 110: “C”}

001011011000
0 0 10 110 110 0 0
A A B C C A A

Compressing Text

aabaacdacdacdac à {a:7, b:1, c:4, d: 3}

aabaacdacdacdac à {aà0,bà1110,cà10,dà110}

aabaacdacdacdac à 0011100010110010110010110010

0 1

Decompressing Text

0011100010110010110010110010

0 0 1110 0 0 10 110 0 10 110 0 10 110 0 10
a a b a a c d a c d a c d a c

a
1

1

0
c
0
d
0
b

Huffman Coding

aabaacdacdacdac à {a:7, b:1, c:4, d: 3}

a, 7b, 1 c, 4d, 3

Huffman Coding

aabaacdacdacdac à {a:7, b:1, c:4, d: 3}

aabaacdacdacdac

a, 7

b, 1

c, 4

d, 3

4

Huffman Coding

aabaacdacdacdac à {a:7, b:1, c:4, d: 3}

aabaacdacdacdac

a, 7

b, 1

c, 4

d, 3

4

8

Huffman Coding

aabaacdacdacdac à {a:7, b:1, c:4, d: 3}

aabaacdacdacdac

a, 7

b, 1

c, 4

d, 3

4

8

15

Huffman Coding

aabaacdacdacdac à {a:7, b:1, c:4, d: 3}

aabaacdacdacdac

a

b

c

d

Huffman Coding

aabaacdacdacdac à {a:7, b:1, c:4, d: 3}

Aabaacdacdacdac à {a:0, c:10, b:110, d: 111}

a

b

c

d

0 1
a

1

1

0
c
0
b d

Prefix-Free Codes are Full Binary Trees

A full binary tree is a tree where every
node has either zero or two children.

Definition: “full binary tree”

{a:0, c:10, b:110, d: 111}
0 1
a

1

1

0
c
0
b d

Every prefix-free code can be represented by a full binary tree

The leaves represent symbols and the path represents the code.

Optimal Prefix-Free Codes

Given symbol frequencies, 𝑓!, and symbols 𝑠!, an optimal
prefix-free code minimizes:

Let len"#$%(𝑠) to be the number of bits required by code to
represent s. Let depth"#$%(𝑠) to be number of edges from the
root to the leaf representing 𝑠 in the tree corresponding to code.

cost code =1
!

&

𝑓! ⋅ len"#$% 𝑠! =1
!

&

𝑓! ⋅ depth"#$%(𝑠!)

Huffman Codes = Optimal Prefix-Free Codes

It turns out Huffman’s Algo generates optimal prefix-free codes!

In an optimal prefix-free code tree, two of the least
frequent symbols are siblings at the greatest depth.

Deep Siblings Lemma

cost code =1
!

&

𝑓! ⋅ len"#$% 𝑠! =1
!

&

𝑓! ⋅ depth"#$%(𝑠!)

Huffman Codes = Optimal Prefix-Free Codes

It turns out Huffman’s Algo generates optimal prefix-free codes!

In an optimal prefix-free code tree, two of the least
frequent symbols are siblings at the greatest depth.

Deep Siblings Lemma

Note that the tree is full; so, the deepest leaves must be
siblings. Then, we show the least frequent symbols are always
the deepest leaves.

cost code =1
!

&

𝑓! ⋅ len"#$% 𝑠! =1
!

&

𝑓! ⋅ depth"#$%(𝑠!)

Huffman Codes = Optimal Prefix-Free Codes

It turns out Huffman’s Algo generates optimal prefix-free codes!

In some optimal prefix-free code tree, two of the least
frequent symbols are siblings at the greatest depth.

Deep Siblings Lemma

Note that the tree is full; so, the deepest leaves must be
siblings. Then, we show the least frequent symbols are always
the deepest leaves.

Suppose for contradiction that they aren’t the deepest leaves.
Then, there must be some other symbol at a deepest leaf.
Swapping that symbol with the least frequent symbol will result
in a smaller cost sum. This means the tree wasn’t optimal.

cost code =1
!

&

𝑓! ⋅ len"#$% 𝑠! =1
!

&

𝑓! ⋅ depth"#$%(𝑠!)

Huffman Codes = Optimal Prefix-Free Codes

We go by induction on the number of symbols.

BC (n = 2). There is only one full binary tree with two leaves.
IH. Suppose the claim is true for all codes with 𝑛 symbols.
IS. We show the claim is true for 𝑛 + 1 symbols.

cost code =1
!

&

𝑓! ⋅ len"#$% 𝑠! =1
!

&

𝑓! ⋅ depth"#$%(𝑠!)

Huffman Codes = Optimal Prefix-Free Codes

We go by induction on the number of symbols.

BC (n = 2). There is only one full binary tree with two leaves.
IH. Suppose the claim is true for all codes with 𝑛 symbols.
IS. We show the claim is true for 𝑛 + 1 symbols. Let 𝐻!"#be the
tree generated by Huffman’s Algorithm for the frequencies

𝑓$ < 𝑓# < ⋯ < 𝑓!

cost code =1
!

&

𝑓! ⋅ len"#$% 𝑠! =1
!

&

𝑓! ⋅ depth"#$%(𝑠!)

Huffman Codes = Optimal Prefix-Free Codes

We go by induction on the number of symbols.

BC (n = 2). There is only one full binary tree with two leaves.
IH. Suppose the claim is true for all codes with 𝑛 symbols.
IS. We show the claim is true for 𝑛 + 1 symbols. Let 𝐻!"#be the
tree generated by Huffman’s Algorithm for the frequencies

𝑓$ < 𝑓# < ⋯ < 𝑓!
Let 𝑇 be some optimal tree for this set of frequencies.

cost code =1
!

&

𝑓! ⋅ len"#$% 𝑠! =1
!

&

𝑓! ⋅ depth"#$%(𝑠!)

Huffman Codes = Optimal Prefix-Free Codes

We go by induction on the number of symbols.

BC (n = 2). There is only one full binary tree with two leaves.
IH. Suppose the claim is true for all codes with 𝑛 symbols.
IS. We show the claim is true for 𝑛 + 1 symbols. Let 𝐻!"#be the
tree generated by Huffman’s Algorithm for the frequencies

𝑓$ < 𝑓# < ⋯ < 𝑓!
Let 𝑇 be some optimal tree for this set of frequencies. We show

cost 𝐻!"# ≤ cost(𝑇)
Thus, showing H!"# is also an optimal code.

cost code =1
!

&

𝑓! ⋅ len"#$% 𝑠! =1
!

&

𝑓! ⋅ depth"#$%(𝑠!)

Huffman Codes = Optimal Prefix-Free Codes

Let 𝐻!"#be the tree generated by Huffman’s Algorithm for the
frequencies 𝑓$ < 𝑓# < ⋯ < 𝑓!. Let 𝑇 be some optimal tree for
this set of frequencies.

Now, we transform 𝐻!"# → 𝐻!"#% and 𝑇 → 𝑇′ by removing their
leaves and replacing their parent with a merged symbol with
frequency 𝑓$ + 𝑓#.

cost code =1
!

&

𝑓! ⋅ len"#$% 𝑠! =1
!

&

𝑓! ⋅ depth"#$%(𝑠!)

𝑓!

𝑓" 𝑓#

𝑓! 𝑓" + 𝑓#

𝑇 𝑇′

Huffman Codes = Optimal Prefix-Free Codes

Let 𝐻!"#be the tree generated by Huffman’s Algorithm for the
frequencies 𝑓$ < 𝑓# < ⋯ < 𝑓!. Let 𝑇 be some optimal tree for
this set of frequencies.

Note that 𝐻!"#% is exactly the tree in the previous step of
Huffman’s algorithm. Then, by our IH, we have

cost 𝐻!"#% ≤ cost(𝑇%)

cost code =1
!

&

𝑓! ⋅ len"#$% 𝑠! =1
!

&

𝑓! ⋅ depth"#$%(𝑠!)

𝑓!

𝑓" 𝑓#

𝑓! 𝑓" + 𝑓#

𝑇 𝑇′

Huffman Codes = Optimal Prefix-Free Codes

By our IH, we have cost 𝐻!"#% ≤ cost(𝑇%). By construction:

cost code =1
!

&

𝑓! ⋅ len"#$% 𝑠! =1
!

&

𝑓! ⋅ depth"#$%(𝑠!)

𝑓!

𝑓" 𝑓#

𝑓! 𝑓" + 𝑓#

cost 𝑇′ = (𝑓!+𝑓") ⋅ (depth# 𝑠$ − 1) +4
$%&

'

𝑓$ ⋅ depth# 𝑠$

=

Huffman Codes = Optimal Prefix-Free Codes

By our IH, we have cost 𝐻!"#% ≤ cost(𝑇%). By construction:

cost code =1
!

&

𝑓! ⋅ len"#$% 𝑠! =1
!

&

𝑓! ⋅ depth"#$%(𝑠!)

𝑓!

𝑓" 𝑓#

𝑓! 𝑓" + 𝑓#

cost 𝑇′ = (𝑓!+𝑓") ⋅ (depth# 𝑠$ − 1) +4
$%&

'

𝑓$ ⋅ depth# 𝑠$

= 4
$%!

'

𝑓$ ⋅ depth# 𝑠$ − (𝑓!+𝑓")

= cost 𝑇 − (𝑓!+𝑓")

Huffman Codes = Optimal Prefix-Free Codes

By our IH, we have
(a) cost 𝐻!"#% ≤ cost(𝑇%).

By construction:
(b) cost 𝑇′ = cost 𝑇 − (𝑓) + 𝑓*)
(c) cost 𝐻&+*, = cost 𝐻&+* − 𝑓) + 𝑓*

Thus:
cost 𝐻&+* =

cost code =1
!

&

𝑓! ⋅ len"#$% 𝑠! =1
!

&

𝑓! ⋅ depth"#$%(𝑠!)

Huffman Codes = Optimal Prefix-Free Codes

By our IH, we have
(a) cost 𝐻!"#% ≤ cost(𝑇%).

By construction:
(b) cost 𝑇′ = cost 𝑇 − (𝑓) + 𝑓*)
(c) cost 𝐻&+*, = cost 𝐻&+* − 𝑓) + 𝑓*

Thus:
cost 𝐻&+* = cost 𝐻&+*, + 𝑓) + 𝑓*

≤ cost(𝑇,) + 𝑓) + 𝑓*
= cost(𝑇)

which is what we were trying to prove!

cost code =1
!

&

𝑓! ⋅ len"#$% 𝑠! =1
!

&

𝑓! ⋅ depth"#$%(𝑠!)

