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Balls and Bins 1

Many of the questions we ask in counting are instances of the question:

How many ways are there to place n balls into m bins?

We can make this question more interesting by varying the following:
Are the balls distinguishable?
Are the bins distinguishable?
Any restrictions on how many balls in a bin? (exactly one, at least
one, at most one, any number)

Let’s start with the ones we already know. . . and work from there.



Indistinguishable Balls, Distinguishable Bins 2

How many ways are there to place n indistinguishable balls into m
distinguishable bins?

Exactly one ball.
At most one ball.
At least one ball. ???
Any number of balls. ???
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Exactly one ball. 1 if n =m, 0 otherwise
At most one ball. (mn)
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These last two are a bit harder. Let’s try to make a counting argument. . .



Pirates and Gold 3

How many ways are there to place n indistinguishable balls into m
distinguishable bins?

Start out with n+m−1 indistinguishable ○’s:

○○○○ ⋅ ⋅ ⋅ ○○○○
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n+m−1 of these

Choose m−1 of the ○’s to turn into “dividers”:

○○ ∣∣○ ⋅ ⋅ ⋅ ○ ∣○○
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n ○’s, m−1 dividers

This means that there are n balls and m−1 dividers (which makes m
bins!). The only step in our counting argument was to choose m−1 of
the n+m−1 ○’s to be dividers. So, there are (n+m−1

m−1 ) ways to place these
balls into bins.
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Let’s talk about “Inclusion-Exclusion”. . .



Inclusion-Exclusion 6

Remember how we started counting with set laws? Well, there’s one
more. . .

∣A∪B∣ = ∣A∣+ ∣B∣− ∣A∩B∣

This is called inclusion-exclusion, and it’s useful for when you want to
compute the size of a union that isn’t disjoint.
More generally, Inclusion-Exclusion says:

∣
n
⋃
i=0

Ai∣ =
n

∑
i1=0
∣Ai1 ∣− ∑

1≤i1<i2≤n
∣Ai1 ∩Ai2 ∣+⋅ ⋅ ⋅+(−1)n−1∣A1∩⋅ ⋅ ⋅∩An∣

=
n

∑
k=1
(−1)k+1⎛

⎝ ∑
1≤i1<⋅⋅⋅<ik≤n

∣Ai1 ∩⋯∩Aik ∣
⎞
⎠

The next obvious question is “how do I use this?”. The big thing to get
about inclusion-exclusion is how to define the Ai’s.
Let’s do an example.
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Triple the Example, Triple the Fun 7

Consider the set
S = {(x,y,z) ∈ [n]× [m]× [`] ∣ x = 1∨y = 1∨ z = 1}

What is ∣S∣?

In English, we want to know how many elements of [n]×[m]×[`] have at
least one 1.

Before we do anything else, we need to determine what Ai is supposed to
be. If we have defined things correctly, then S = A1∪A2∪⋯∪An.

Here are some proposals:
Ai is the set of triples with i of the three coordinates equal to 1.
Ai is the set of triples with the ith coordinate equal to 1.

We want to use:

Ai is the set of triples with the ith coordinate equal to 1.

Here’s why: (1) A1∪A2∪A3 = S, (2) ∣Ai∣ is easy to count!, (3) ∣⋂
i∈X

Ai∣ is

easy to count!
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Triple the Example, Triple the Fun (continued) 8

S = {(x,y,z) ∈ [n]× [m]× [`] ∣ x = 1∨y = 1∨ z = 1}

Ai is the set of triples with the ith coordinate equal to 1.

∣A1∣ =

m`, because we choose the first coordinate from 1 choice, the
second coordinate from m choices, and the third from ` choices.
∣A2∣ = n`, because we choose the first coordinate from n choices, the
second coordinate from 1 choice, and the third from ` choices.
∣A3∣ = nm, because we choose the first coordinate from n choices, the
second coordinate from m choices, and the third from 1 choice.
∣A1∩A2∣ = `
∣A1∩A3∣ =m
∣A2∩A3∣ = n
∣A1∩A2∩A3∣ = 1

Putting it all together:
∣S∣ = ∣A1∪A2∪A3∣
= (∣A1∣+ ∣A2∣+ ∣A3∣)−(∣A1∩A2∣+ ∣A1∩A3∣+ ∣A2∩A3∣)+ ∣A1∩A2∩A3∣
= (m`+n`+nm)−(`+m+n)+1
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Back to our problem. . . 9

How many ways are there to place n distinguishable balls into m
distinguishable bins such that every bin gets at least one ball?
What are our Ai’s?

Some options again. . .
Ai is the set of outcomes with at least one ball in i bins.
Ai is the set of outcomes with at least one ball in the ith bin.
Ai is the set of outcomes with the ith ball in the ith bin.
Ai is the set of outcomes with no balls in the ith bin.
Ai is the set of outcomes with i bins with no ball.

Ai is the set of outcomes with no balls in the ith bin.

Wait what?
m
⋃
i=0

Ai is not our set. . .

Ah! But we already know the total number (mn), and removing
m
⋃
i=0

Ai

from our set leaves what we want!
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Back to our problem. . . (continued) 10

Let S be the set of ways to place n distinguishable balls into m
distinguishable bins.

Ai is the set of outcomes with no balls in the ith bin.

Here we go again. . .

∣S∖
m
⋃
i=0

Ai∣ =mn−
⎛
⎝

m

∑
k=1
(−1)k+1⎛

⎝ ∑
1≤i1<⋅⋅⋅<ik≤m

∣Ai1 ∩⋯∩Aik ∣
⎞
⎠
⎞
⎠

Consider one term of one of the inner summations:

∑
1≤i1<⋅⋅⋅<ik≤m

∣Ai1 ∩⋯∩Aik ∣

And one term of this summation:
∣Ai1 ∩⋯∩Aik ∣

Does this cardinality depend on what the i j’s are (for this problem)?

No! Remember, Ai1 ∩⋯∩Aik is the set of outcomes where bins i1, i2, . . . , ik
are not hit. We know how to count this already: ∣Ai1 ∩⋯∩Aik ∣ = (m−k)n.
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Back to our problem. . . (continued) 11

Now, considering the summation:

∑
1≤i1<⋅⋅⋅<ik≤m

∣Ai1 ∩⋯∩Aik ∣ =

∑
1≤i1<⋅⋅⋅<ik≤m

(m−k)n

= (m
k
)(m−k)n

And, finally, we have:

∣S∖
m
⋃
i=0
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⎝

m

∑
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1≤i1<⋅⋅⋅<ik≤m
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m

∑
k=1
(−1)k+1(m

k
)(m−k)n)

=
m

∑
k=0
(−1)k(m

k
)(m−k)n



Back to our problem. . . (continued) 11

Now, considering the summation:

∑
1≤i1<⋅⋅⋅<ik≤m

∣Ai1 ∩⋯∩Aik ∣ = ∑
1≤i1<⋅⋅⋅<ik≤m

(m−k)n

=

(m
k
)(m−k)n

And, finally, we have:

∣S∖
m
⋃
i=0

Ai∣ =mn−
⎛
⎝

m

∑
k=1
(−1)k+1⎛

⎝ ∑
1≤i1<⋅⋅⋅<ik≤m

∣Ai1 ∩⋯∩Aik ∣
⎞
⎠
⎞
⎠

=mn−(
m

∑
k=1
(−1)k+1(m

k
)(m−k)n)

=
m

∑
k=0
(−1)k(m

k
)(m−k)n



Back to our problem. . . (continued) 11

Now, considering the summation:

∑
1≤i1<⋅⋅⋅<ik≤m

∣Ai1 ∩⋯∩Aik ∣ = ∑
1≤i1<⋅⋅⋅<ik≤m

(m−k)n

= (m
k
)(m−k)n

And, finally, we have:

∣S∖
m
⋃
i=0

Ai∣ =mn−
⎛
⎝

m

∑
k=1
(−1)k+1⎛

⎝ ∑
1≤i1<⋅⋅⋅<ik≤m

∣Ai1 ∩⋯∩Aik ∣
⎞
⎠
⎞
⎠

=mn−(
m

∑
k=1
(−1)k+1(m

k
)(m−k)n)

=
m

∑
k=0
(−1)k(m

k
)(m−k)n



Back to our problem. . . (continued) 11

Now, considering the summation:

∑
1≤i1<⋅⋅⋅<ik≤m

∣Ai1 ∩⋯∩Aik ∣ = ∑
1≤i1<⋅⋅⋅<ik≤m

(m−k)n

= (m
k
)(m−k)n

And, finally, we have:

∣S∖
m
⋃
i=0

Ai∣ =

mn−
⎛
⎝

m

∑
k=1
(−1)k+1⎛

⎝ ∑
1≤i1<⋅⋅⋅<ik≤m

∣Ai1 ∩⋯∩Aik ∣
⎞
⎠
⎞
⎠

=mn−(
m

∑
k=1
(−1)k+1(m

k
)(m−k)n)

=
m

∑
k=0
(−1)k(m

k
)(m−k)n



Back to our problem. . . (continued) 11

Now, considering the summation:

∑
1≤i1<⋅⋅⋅<ik≤m

∣Ai1 ∩⋯∩Aik ∣ = ∑
1≤i1<⋅⋅⋅<ik≤m

(m−k)n

= (m
k
)(m−k)n

And, finally, we have:

∣S∖
m
⋃
i=0

Ai∣ =mn−
⎛
⎝

m

∑
k=1
(−1)k+1⎛

⎝ ∑
1≤i1<⋅⋅⋅<ik≤m

∣Ai1 ∩⋯∩Aik ∣
⎞
⎠
⎞
⎠

=

mn−(
m

∑
k=1
(−1)k+1(m

k
)(m−k)n)

=
m

∑
k=0
(−1)k(m

k
)(m−k)n



Back to our problem. . . (continued) 11

Now, considering the summation:

∑
1≤i1<⋅⋅⋅<ik≤m

∣Ai1 ∩⋯∩Aik ∣ = ∑
1≤i1<⋅⋅⋅<ik≤m

(m−k)n

= (m
k
)(m−k)n

And, finally, we have:

∣S∖
m
⋃
i=0

Ai∣ =mn−
⎛
⎝

m

∑
k=1
(−1)k+1⎛

⎝ ∑
1≤i1<⋅⋅⋅<ik≤m

∣Ai1 ∩⋯∩Aik ∣
⎞
⎠
⎞
⎠

=mn−(
m

∑
k=1
(−1)k+1(m

k
)(m−k)n)

=

m

∑
k=0
(−1)k(m

k
)(m−k)n



Back to our problem. . . (continued) 11

Now, considering the summation:

∑
1≤i1<⋅⋅⋅<ik≤m

∣Ai1 ∩⋯∩Aik ∣ = ∑
1≤i1<⋅⋅⋅<ik≤m

(m−k)n

= (m
k
)(m−k)n

And, finally, we have:

∣S∖
m
⋃
i=0

Ai∣ =mn−
⎛
⎝

m

∑
k=1
(−1)k+1⎛

⎝ ∑
1≤i1<⋅⋅⋅<ik≤m

∣Ai1 ∩⋯∩Aik ∣
⎞
⎠
⎞
⎠

=mn−(
m

∑
k=1
(−1)k+1(m

k
)(m−k)n)

=
m

∑
k=0
(−1)k(m

k
)(m−k)n



Final Tally 12

How many ways are there to place n indistinguishable balls into m
distinguishable bins?

Exactly one ball. 1 if n =m, 0 otherwise
At most one ball. (mn)
At least one ball. (n−1

m−1)
Any number of balls. (n+m−1

m−1 )

How many ways are there to place n distinguishable balls into m
distinguishable bins?

Exactly one ball. m! if n =m, 0 otherwise
At most one ball. m!

(m−n)! if m ≥ n

At least one ball.
m

∑
k=0
(−1)k(m

k
)(m−k)n

Any number of balls. mn


