CS

Mathematical Foundations of Computing

CS 13: Mathematical Foundations of Computing

Fancy Counting

$$
1,2,3
$$

Many of the questions we ask in counting are instances of the question:

How many ways are there to place n balls into m bins?

We can make this question more interesting by varying the following:

- Are the balls distinguishable?
- Are the bins distinguishable?
- Any restrictions on how many balls in a bin? (exactly one, at least one, at most one, any number)
Let's start with the ones we already know. . . and work from there.

How many ways are there to place n indistinguishable balls into m distinguishable bins?

Exactly one ball.
At most one ball.
At least one ball. ???
Any number of balls. ???

How many ways are there to place n indistinguishable balls into m distinguishable bins?

Exactly one ball. 1 if $n=m, 0$ otherwise
At most one ball.
At least one ball. ???
Any number of balls. ???

How many ways are there to place n indistinguishable balls into m distinguishable bins?

Exactly one ball. 1 if $n=m, 0$ otherwise
At most one ball. $\binom{m}{n}$
At least one ball. ???
Any number of balls. ???

How many ways are there to place n indistinguishable balls into m distinguishable bins?

Exactly one ball. 1 if $n=m, 0$ otherwise
At most one ball. $\binom{m}{n}$
At least one ball. ???
Any number of balls. ???
These last two are a bit harder. Let's try to make a counting argument. . .

How many ways are there to place n indistinguishable balls into m distinguishable bins?

How many ways are there to place n indistinguishable balls into m distinguishable bins?

Start out with $n+m-1$ indistinguishable o's:

How many ways are there to place n indistinguishable balls into m distinguishable bins?

Start out with $n+m-1$ indistinguishable o's:

$$
\underbrace{\circ \circ \circ \circ \cdots \circ \circ \circ \circ}_{n+m-1 \text { of these }}
$$

How many ways are there to place n indistinguishable balls into m distinguishable bins?

Start out with $n+m-1$ indistinguishable o's:

$$
\underbrace{\circ \circ \circ \circ \cdots \circ \circ \circ \circ}_{n+m-1 \text { of these }}
$$

Choose $m-1$ of the o's to turn into "dividers":

$$
\underbrace{\circ \circ||\circ \cdots \circ| \circ \circ}_{n \circ \text { 's, } m-1 \text { dividers }}
$$

How many ways are there to place n indistinguishable balls into m distinguishable bins?

Start out with $n+m-1$ indistinguishable o's:

$$
\underbrace{\circ \circ \circ \circ \cdots \circ \circ \circ \circ}_{n+m-1 \text { of these }}
$$

Choose $m-1$ of the o's to turn into "dividers":

This means that there are n balls and $m-1$ dividers (which makes m bins!). The only step in our counting argument was to choose $m-1$ of the $n+m-1$ o's to be dividers. So, there are $\binom{n+m-1}{m-1}$ ways to place these balls into bins.

How many ways are there to place n indistinguishable balls into m distinguishable bins?

Exactly one ball. 1 if $n=m, 0$ otherwise
At most one ball. $\binom{m}{n}$
At least one ball. ???
Any number of balls. $\binom{n+m-1}{m-1}$
What about the last one? Can we do it now?

How many ways are there to place n indistinguishable balls into m distinguishable bins?

Exactly one ball. 1 if $n=m, 0$ otherwise

- At most one ball. $\binom{m}{n}$
- At least one ball. $\binom{n-1}{m-1}$

Any number of balls. $\binom{n+m-1}{m-1}$
What about the last one? Can we do it now?
Sure. Take m of the balls and distribute them, one to each bin. Then, of the remaining $n-m$, give each bin any number of balls. There are

$$
\binom{(n-m)+m-1}{m-1}=\binom{n-1}{m-1}
$$

How many ways are there to place n distinguishable balls into m distinguishable bins?

- Exactly one ball.

At most one ball.
At least one ball. ???

- Any number of balls.

How many ways are there to place n distinguishable balls into m distinguishable bins?

Exactly one ball. m ! if $n=m, 0$ otherwise
At most one ball.
At least one ball. ???

- Any number of balls.

How many ways are there to place n distinguishable balls into m distinguishable bins?

Exactly one ball. m ! if $n=m, 0$ otherwise
At most one ball. $\frac{m!}{(m-n)!}$ if $m \geq n$
At least one ball. ???
Any number of balls.

How many ways are there to place n distinguishable balls into m distinguishable bins?

Exactly one ball. m ! if $n=m, 0$ otherwise
At most one ball. $\frac{m!}{(m-n)!}$ if $m \geq n$
At least one ball. ???
Any number of balls. m^{n}

How many ways are there to place n distinguishable balls into m distinguishable bins?

Exactly one ball. m ! if $n=m, 0$ otherwise
At most one ball. $\frac{m!}{(m-n)!}$ if $m \geq n$
At least one ball. ???
Any number of balls. m^{n}
Let's talk about "Inclusion-Exclusion". . .

Inclusion-Exclusion

Remember how we started counting with set laws? Well, there's one more...

Inclusion-Exclusion

Remember how we started counting with set laws? Well, there's one more...

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

Inclusion-Exclusion

Remember how we started counting with set laws? Well, there's one more...

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

This is called inclusion-exclusion, and it's useful for when you want to compute the size of a union that isn't disjoint.

Inclusion-Exclusion

Remember how we started counting with set laws? Well, there's one more...

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

This is called inclusion-exclusion, and it's useful for when you want to compute the size of a union that isn't disjoint.
More generally, Inclusion-Exclusion says:

$$
\left|\bigcup_{i=0}^{n} A_{i}\right|=\sum_{i_{1}=0}^{n}\left|A_{i_{1}}\right|-\sum_{1 \leq i_{1}<i_{2} \leq n}\left|A_{i_{1}} \cap A_{i_{2}}\right|+\cdots+(-1)^{n-1}\left|A_{1} \cap \cdots \cap A_{n}\right|
$$

Inclusion-Exclusion

Remember how we started counting with set laws? Well, there's one more...

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

This is called inclusion-exclusion, and it's useful for when you want to compute the size of a union that isn't disjoint.
More generally, Inclusion-Exclusion says:

$$
\begin{aligned}
\left|\bigcup_{i=0}^{n} A_{i}\right| & =\sum_{i_{1}=0}^{n}\left|A_{i_{1}}\right|-\sum_{1 \leq i_{1}<i_{2} \leq n}\left|A_{i_{1}} \cap A_{i_{2}}\right|+\cdots+(-1)^{n-1}\left|A_{1} \cap \cdots \cap A_{n}\right| \\
& =\sum_{k=1}^{n}(-1)^{k+1}\left(\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n}\left|A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right|\right)
\end{aligned}
$$

Remember how we started counting with set laws? Well, there's one more...

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

This is called inclusion-exclusion, and it's useful for when you want to compute the size of a union that isn't disjoint.
More generally, Inclusion-Exclusion says:

$$
\begin{aligned}
\left|\bigcup_{i=0}^{n} A_{i}\right| & =\sum_{i_{1}=0}^{n}\left|A_{i_{1}}\right|-\sum_{1 \leq i_{1}<i_{2} \leq n}\left|A_{i_{1}} \cap A_{i_{2}}\right|+\cdots+(-1)^{n-1}\left|A_{1} \cap \cdots \cap A_{n}\right| \\
& =\sum_{k=1}^{n}(-1)^{k+1}\left(\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n}\left|A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right|\right)
\end{aligned}
$$

The next obvious question is "how do I use this?". The big thing to get about inclusion-exclusion is how to define the A_{i} 's.
Let's do an example.

Consider the set

$$
S=\{(x, y, z) \in[n] \times[m] \times[\ell] \mid x=1 \vee y=1 \vee z=1\}
$$

What is $|S|$?

Consider the set

$$
S=\{(x, y, z) \in[n] \times[m] \times[\ell] \mid x=1 \vee y=1 \vee z=1\}
$$

What is $|S|$?
In English, we want to know how many elements of $[n] \times[m] \times[\ell]$ have at least one 1.

Consider the set

$$
S=\{(x, y, z) \in[n] \times[m] \times[\ell] \mid x=1 \vee y=1 \vee z=1\}
$$

What is $|S|$?
In English, we want to know how many elements of $[n] \times[m] \times[\ell]$ have at least one 1.

Before we do anything else, we need to determine what A_{i} is supposed to be. If we have defined things correctly, then $S=A_{1} \cup A_{2} \cup \cdots \cup A_{n}$.

Consider the set

$$
S=\{(x, y, z) \in[n] \times[m] \times[\ell] \mid x=1 \vee y=1 \vee z=1\}
$$

What is $|S|$?
In English, we want to know how many elements of $[n] \times[m] \times[\ell]$ have at least one 1.

Before we do anything else, we need to determine what A_{i} is supposed to be. If we have defined things correctly, then $S=A_{1} \cup A_{2} \cup \cdots \cup A_{n}$.

Here are some proposals:
A_{i} is the set of triples with i of the three coordinates equal to 1 .

- A_{i} is the set of triples with the i th coordinate equal to 1.

Consider the set

$$
S=\{(x, y, z) \in[n] \times[m] \times[\ell] \mid x=1 \vee y=1 \vee z=1\}
$$

What is $|S|$?
In English, we want to know how many elements of $[n] \times[m] \times[\ell]$ have at least one 1.

Before we do anything else, we need to determine what A_{i} is supposed to be. If we have defined things correctly, then $S=A_{1} \cup A_{2} \cup \cdots \cup A_{n}$.

Here are some proposals:

- A_{i} is the set of triples with i of the three coordinates equal to 1 .
- A_{i} is the set of triples with the i th coordinate equal to 1 .

We want to use:
A_{i} is the set of triples with the i th coordinate equal to 1 .

Consider the set

$$
S=\{(x, y, z) \in[n] \times[m] \times[\ell] \mid x=1 \vee y=1 \vee z=1\}
$$

What is $|S|$?
In English, we want to know how many elements of $[n] \times[m] \times[\ell]$ have at least one 1.

Before we do anything else, we need to determine what A_{i} is supposed to be. If we have defined things correctly, then $S=A_{1} \cup A_{2} \cup \cdots \cup A_{n}$.

Here are some proposals:

- A_{i} is the set of triples with i of the three coordinates equal to 1 .
- A_{i} is the set of triples with the i th coordinate equal to 1 .

We want to use:

A_{i} is the set of triples with the i th coordinate equal to 1 .

Here's why: (1) $A_{1} \cup A_{2} \cup A_{3}=S$, (2) $\left|A_{i}\right|$ is easy to count!, (3) $\left|\bigcap_{i \in X} A_{i}\right|$ is easy to count!

$$
S=\{(x, y, z) \in[n] \times[m] \times[\ell] \mid x=1 \vee y=1 \vee z=1\}
$$

A_{i} is the set of triples with the i th coordinate equal to 1.
$\left|A_{1}\right|=$

$$
S=\{(x, y, z) \in[n] \times[m] \times[\ell] \mid x=1 \vee y=1 \vee z=1\}
$$

A_{i} is the set of triples with the i th coordinate equal to 1.
$\square\left|A_{1}\right|=m \ell$, because we choose the first coordinate from 1 choice, the second coordinate from m choices, and the third from ℓ choices.

- $\left|A_{2}\right|=$

$$
S=\{(x, y, z) \in[n] \times[m] \times[\ell] \mid x=1 \vee y=1 \vee z=1\}
$$

A_{i} is the set of triples with the i th coordinate equal to 1.

- $\left|A_{1}\right|=m \ell$, because we choose the first coordinate from 1 choice, the second coordinate from m choices, and the third from ℓ choices.
- $\left|A_{2}\right|=n \ell$, because we choose the first coordinate from n choices, the second coordinate from 1 choice, and the third from ℓ choices.
- $\left|A_{3}\right|=$

$$
S=\{(x, y, z) \in[n] \times[m] \times[\ell] \mid x=1 \vee y=1 \vee z=1\}
$$

A_{i} is the set of triples with the i th coordinate equal to 1.
$\square\left|A_{1}\right|=m \ell$, because we choose the first coordinate from 1 choice, the second coordinate from m choices, and the third from ℓ choices.

- $\left|A_{2}\right|=n \ell$, because we choose the first coordinate from n choices, the second coordinate from 1 choice, and the third from ℓ choices.
$\square\left|A_{3}\right|=n m$, because we choose the first coordinate from n choices, the second coordinate from m choices, and the third from 1 choice.
- $\left|A_{1} \cap A_{2}\right|=$

$$
S=\{(x, y, z) \in[n] \times[m] \times[\ell] \mid x=1 \vee y=1 \vee z=1\}
$$

A_{i} is the set of triples with the i th coordinate equal to 1.

- $\left|A_{1}\right|=m \ell$, because we choose the first coordinate from 1 choice, the second coordinate from m choices, and the third from ℓ choices.
$-\left|A_{2}\right|=n \ell$, because we choose the first coordinate from n choices, the second coordinate from 1 choice, and the third from ℓ choices.
$\square\left|A_{3}\right|=n m$, because we choose the first coordinate from n choices, the second coordinate from m choices, and the third from 1 choice.
- $\left|A_{1} \cap A_{2}\right|=\ell$
- $\left|A_{1} \cap A_{3}\right|=$

$$
S=\{(x, y, z) \in[n] \times[m] \times[\ell] \mid x=1 \vee y=1 \vee z=1\}
$$

A_{i} is the set of triples with the i th coordinate equal to 1.

- $\left|A_{1}\right|=m \ell$, because we choose the first coordinate from 1 choice, the second coordinate from m choices, and the third from ℓ choices.
- $\left|A_{2}\right|=n \ell$, because we choose the first coordinate from n choices, the second coordinate from 1 choice, and the third from ℓ choices.
$\square\left|A_{3}\right|=n m$, because we choose the first coordinate from n choices, the second coordinate from m choices, and the third from 1 choice.
$-\left|A_{1} \cap A_{2}\right|=\ell$
$-\left|A_{1} \cap A_{3}\right|=m$
- $\left|A_{2} \cap A_{3}\right|=$

$$
S=\{(x, y, z) \in[n] \times[m] \times[\ell] \mid x=1 \vee y=1 \vee z=1\}
$$

A_{i} is the set of triples with the i th coordinate equal to 1.
$\square\left|A_{1}\right|=m \ell$, because we choose the first coordinate from 1 choice, the second coordinate from m choices, and the third from ℓ choices.
$-\left|A_{2}\right|=n \ell$, because we choose the first coordinate from n choices, the second coordinate from 1 choice, and the third from ℓ choices.
$\square\left|A_{3}\right|=n m$, because we choose the first coordinate from n choices, the second coordinate from m choices, and the third from 1 choice.

- $\left|A_{1} \cap A_{2}\right|=\ell$
$-\left|A_{1} \cap A_{3}\right|=m$
$-\left|A_{2} \cap A_{3}\right|=n$
- $\left|A_{1} \cap A_{2} \cap A_{3}\right|=$

$$
S=\{(x, y, z) \in[n] \times[m] \times[\ell] \mid x=1 \vee y=1 \vee z=1\}
$$

A_{i} is the set of triples with the i th coordinate equal to 1.
$\square\left|A_{1}\right|=m \ell$, because we choose the first coordinate from 1 choice, the second coordinate from m choices, and the third from ℓ choices.

- $\left|A_{2}\right|=n \ell$, because we choose the first coordinate from n choices, the second coordinate from 1 choice, and the third from ℓ choices.
$\square\left|A_{3}\right|=n m$, because we choose the first coordinate from n choices, the second coordinate from m choices, and the third from 1 choice.
- $\left|A_{1} \cap A_{2}\right|=\ell$
$-\left|A_{1} \cap A_{3}\right|=m$
- $\left|A_{2} \cap A_{3}\right|=n$
$-\left|A_{1} \cap A_{2} \cap A_{3}\right|=1$
Putting it all together:

$$
S=\{(x, y, z) \in[n] \times[m] \times[\ell] \mid x=1 \vee y=1 \vee z=1\}
$$

A_{i} is the set of triples with the i th coordinate equal to 1 .

$\square\left|A_{1}\right|=m \ell$, because we choose the first coordinate from 1 choice, the second coordinate from m choices, and the third from ℓ choices.
$-\left|A_{2}\right|=n \ell$, because we choose the first coordinate from n choices, the second coordinate from 1 choice, and the third from ℓ choices.
$\square\left|A_{3}\right|=n m$, because we choose the first coordinate from n choices, the second coordinate from m choices, and the third from 1 choice.

- $\left|A_{1} \cap A_{2}\right|=\ell$
$-\left|A_{1} \cap A_{3}\right|=m$
- $\left|A_{2} \cap A_{3}\right|=n$
$-\left|A_{1} \cap A_{2} \cap A_{3}\right|=1$
Putting it all together:

$$
|S|=\left|A_{1} \cup A_{2} \cup A_{3}\right|
$$

$$
S=\{(x, y, z) \in[n] \times[m] \times[\ell] \mid x=1 \vee y=1 \vee z=1\}
$$

A_{i} is the set of triples with the i th coordinate equal to 1.
$\square\left|A_{1}\right|=m \ell$, because we choose the first coordinate from 1 choice, the second coordinate from m choices, and the third from ℓ choices.

- $\left|A_{2}\right|=n \ell$, because we choose the first coordinate from n choices, the second coordinate from 1 choice, and the third from ℓ choices.
$\square\left|A_{3}\right|=n m$, because we choose the first coordinate from n choices, the second coordinate from m choices, and the third from 1 choice.
- $\left|A_{1} \cap A_{2}\right|=\ell$
$-\left|A_{1} \cap A_{3}\right|=m$
- $\left|A_{2} \cap A_{3}\right|=n$
$\square\left|A_{1} \cap A_{2} \cap A_{3}\right|=1$
Putting it all together:

$$
\begin{aligned}
|S| & =\left|A_{1} \cup A_{2} \cup A_{3}\right| \\
& =\left(\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|\right)-\left(\left|A_{1} \cap A_{2}\right|+\left|A_{1} \cap A_{3}\right|+\left|A_{2} \cap A_{3}\right|\right)+\left|A_{1} \cap A_{2} \cap A_{3}\right|
\end{aligned}
$$

$$
S=\{(x, y, z) \in[n] \times[m] \times[\ell] \mid x=1 \vee y=1 \vee z=1\}
$$

A_{i} is the set of triples with the i th coordinate equal to 1.

$\square\left|A_{1}\right|=m \ell$, because we choose the first coordinate from 1 choice, the second coordinate from m choices, and the third from ℓ choices.

- $\left|A_{2}\right|=n \ell$, because we choose the first coordinate from n choices, the second coordinate from 1 choice, and the third from ℓ choices.
$\square\left|A_{3}\right|=n m$, because we choose the first coordinate from n choices, the second coordinate from m choices, and the third from 1 choice.
- $\left|A_{1} \cap A_{2}\right|=\ell$
$-\left|A_{1} \cap A_{3}\right|=m$
- $\left|A_{2} \cap A_{3}\right|=n$
$\square\left|A_{1} \cap A_{2} \cap A_{3}\right|=1$
Putting it all together:

$$
\begin{aligned}
|S| & =\left|A_{1} \cup A_{2} \cup A_{3}\right| \\
& =\left(\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|\right)-\left(\left|A_{1} \cap A_{2}\right|+\left|A_{1} \cap A_{3}\right|+\left|A_{2} \cap A_{3}\right|\right)+\left|A_{1} \cap A_{2} \cap A_{3}\right| \\
& =(m \ell+n \ell+n m)-(\ell+m+n)+1
\end{aligned}
$$

How many ways are there to place n distinguishable balls into m distinguishable bins such that every bin gets at least one ball? What are our A_{i} 's?

How many ways are there to place n distinguishable balls into m distinguishable bins such that every bin gets at least one ball? What are our A_{i} 's?

Some options again. . .

- A_{i} is the set of outcomes with at least one ball in i bins.
- A_{i} is the set of outcomes with at least one ball in the i th bin.
- A_{i} is the set of outcomes with the i th ball in the i th bin.
- A_{i} is the set of outcomes with no balls in the i th bin.
- A_{i} is the set of outcomes with i bins with no ball.

How many ways are there to place n distinguishable balls into m distinguishable bins such that every bin gets at least one ball? What are our A_{i} 's?

Some options again. . .

- A_{i} is the set of outcomes with at least one ball in i bins.
- A_{i} is the set of outcomes with at least one ball in the i th bin.
- A_{i} is the set of outcomes with the i th ball in the i th bin.
- A_{i} is the set of outcomes with no balls in the i th bin.
- A_{i} is the set of outcomes with i bins with no ball.
A_{i} is the set of outcomes with no balls in the i th bin.
Wait what? $\bigcup_{i=0}^{m} A_{i}$ is not our set. ..

How many ways are there to place n distinguishable balls into m distinguishable bins such that every bin gets at least one ball? What are our A_{i} 's?

Some options again. . .

- A_{i} is the set of outcomes with at least one ball in i bins.
- A_{i} is the set of outcomes with at least one ball in the i th bin.
- A_{i} is the set of outcomes with the i th ball in the i th bin.
A_{i} is the set of outcomes with no balls in the i th bin.
- A_{i} is the set of outcomes with i bins with no ball.

A_{i} is the set of outcomes with no balls in the i th bin.

Wait what? $\bigcup_{i=0}^{m} A_{i}$ is not our set. .
Ah! But we already know the total number $\left(m^{n}\right)$, and removing $\bigcup_{i=0}^{m} A_{i}$ from our set leaves what we want!

Let S be the set of ways to place n distinguishable balls into m distinguishable bins.

A_{i} is the set of outcomes with no balls in the i th bin.

Here we go again...

$$
\left|S \backslash \bigcup_{i=0}^{m} A_{i}\right|=m^{n}-\left(\sum_{k=1}^{m}(-1)^{k+1}\left(\sum_{1 \leq i_{1}<\cdots<i_{k} \leq m}\left|A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right|\right)\right)
$$

Let S be the set of ways to place n distinguishable balls into m distinguishable bins.

A_{i} is the set of outcomes with no balls in the i th bin.

Here we go again. . .

$$
\left|S \backslash \bigcup_{i=0}^{m} A_{i}\right|=m^{n}-\left(\sum_{k=1}^{m}(-1)^{k+1}\left(\sum_{1 \leq i_{1}<\cdots<i_{k} \leq m}\left|A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right|\right)\right)
$$

Consider one term of one of the inner summations:

$$
\sum_{1 \leq i_{1}<\cdots<i_{k} \leq m}\left|A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right|
$$

And one term of this summation:

$$
\left|A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right|
$$

Does this cardinality depend on what the i_{j} 's are (for this problem)?

Let S be the set of ways to place n distinguishable balls into m distinguishable bins.

A_{i} is the set of outcomes with no balls in the i th bin.

Here we go again. . .

$$
\left|S \backslash \bigcup_{i=0}^{m} A_{i}\right|=m^{n}-\left(\sum_{k=1}^{m}(-1)^{k+1}\left(\sum_{1 \leq i_{1}<\cdots<i_{k} \leq m}\left|A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right|\right)\right)
$$

Consider one term of one of the inner summations:

$$
\sum_{1 \leq i_{1}<\cdots<i_{k} \leq m}\left|A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right|
$$

And one term of this summation:

$$
\left|A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right|
$$

Does this cardinality depend on what the i_{j} 's are (for this problem)?
No! Remember, $A_{i_{1}} \cap \cdots \cap A_{i_{k}}$ is the set of outcomes where bins $i_{1}, i_{2}, \ldots, i_{k}$ are not hit. We know how to count this already: $\left|A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right|=(m-k)^{n}$.

Now, considering the summation:

$$
\sum_{1 \leq i_{1}<\cdots<i_{k} \leq m}\left|A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right|=
$$

Now, considering the summation:

$$
\sum_{1 \leq i_{1}<\cdots<i_{k} \leq m}\left|A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right|=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq m}(m-k)^{n}
$$

Now, considering the summation:

$$
\begin{aligned}
\sum_{1 \leq i_{1}<\cdots<i_{k} \leq m}\left|A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right| & =\sum_{1 \leq i_{1}<\cdots<i_{k} \leq m}(m-k)^{n} \\
& =\binom{m}{k}(m-k)^{n}
\end{aligned}
$$

Now, considering the summation:

$$
\begin{aligned}
\sum_{1 \leq i_{1}<\cdots<i_{k} \leq m}\left|A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right| & =\sum_{1 \leq i_{1}<\cdots<i_{k} \leq m}(m-k)^{n} \\
& =\binom{m}{k}(m-k)^{n}
\end{aligned}
$$

And, finally, we have:

$$
\left|S \backslash \bigcup_{i=0}^{m} A_{i}\right|=
$$

Now, considering the summation:

$$
\begin{aligned}
\sum_{1 \leq i_{1}<\cdots<i_{k} \leq m}\left|A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right| & =\sum_{1 \leq i_{1}<\cdots<i_{k} \leq m}(m-k)^{n} \\
& =\binom{m}{k}(m-k)^{n}
\end{aligned}
$$

And, finally, we have:

$$
\begin{aligned}
\left|S \backslash \bigcup_{i=0}^{m} A_{i}\right| & =m^{n}-\left(\sum_{k=1}^{m}(-1)^{k+1}\left(\sum_{1 \leq i_{1}<\cdots<i_{k} \leq m}\left|A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right|\right)\right) \\
& =
\end{aligned}
$$

Now, considering the summation:

$$
\begin{aligned}
\sum_{1 \leq i_{1}<\cdots<i_{k} \leq m}\left|A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right| & =\sum_{1 \leq i_{1}<\cdots<i_{k} \leq m}(m-k)^{n} \\
& =\binom{m}{k}(m-k)^{n}
\end{aligned}
$$

And, finally, we have:

$$
\begin{aligned}
\left|S \backslash \bigcup_{i=0}^{m} A_{i}\right| & =m^{n}-\left(\sum_{k=1}^{m}(-1)^{k+1}\left(\sum_{1 \leq i_{1}<\cdots<i_{k} \leq m}\left|A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right|\right)\right) \\
& =m^{n}-\left(\sum_{k=1}^{m}(-1)^{k+1}\binom{m}{k}(m-k)^{n}\right) \\
& =
\end{aligned}
$$

Now, considering the summation:

$$
\begin{aligned}
\sum_{1 \leq i_{1}<\cdots<i_{k} \leq m}\left|A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right| & =\sum_{1 \leq i_{1}<\cdots<i_{k} \leq m}(m-k)^{n} \\
& =\binom{m}{k}(m-k)^{n}
\end{aligned}
$$

And, finally, we have:

$$
\begin{aligned}
\left|S \backslash \bigcup_{i=0}^{m} A_{i}\right| & =m^{n}-\left(\sum_{k=1}^{m}(-1)^{k+1}\left(\sum_{1 \leq i_{1}<\cdots<i_{k} \leq m}\left|A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right|\right)\right) \\
& =m^{n}-\left(\sum_{k=1}^{m}(-1)^{k+1}\binom{m}{k}(m-k)^{n}\right) \\
& =\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}(m-k)^{n}
\end{aligned}
$$

How many ways are there to place n indistinguishable balls into m distinguishable bins?

Exactly one ball. 1 if $n=m, 0$ otherwise
At most one ball. $\binom{m}{n}$

- At least one ball. $\binom{n-1}{m-1}$

Any number of balls. $\binom{n+m-1}{m-1}$

How many ways are there to place n distinguishable balls into m distinguishable bins?

Exactly one ball. m ! if $n=m, 0$ otherwise
At most one ball. $\frac{m!}{(m-n)!}$ if $m \geq n$

- At least one ball. $\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}(m-k)^{n}$

Any number of balls. m^{n}

