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Algorithms 1

Baseball Tournaments
Imagine you’re designing a tournament for n little-league baseball teams.
There are several different ways that they could play each other:

Each team plays every other team once. (Round Robin)
Each team plays until they lose. (Single Elimination)
Each team plays until they lose twice. (Double Elimination)

You have been tasked with figuring out which type of tournament is best
for the children to play in. Since each game costs your boss money, he
would like them to play a minimal number of games. Which type of
tournament should you recommend?



Bioinformatics 2

DNA Sequencing
Imagine you’re working in bioinformatics, and you’ve been asked to
identify if a strand of DNA could have replicated from from a set of other
strands of DNA. Recall that DNA strands are just strings of {A,C,T,G}.

Your first thought is to write a program to brute force all the possibilities.
Is this a reasonable approach?



Counting Cards 3

Poker
You’re playing a game of poker and you have a pair of 10’s and a pair of
queens.

How likely are you to win?



It’s about the process 4

As a Computer Scientist, you will often write algorithms. You’ll also need
to reason about:

1 Enumeration. How many solutions are there to a problem?
Can we solve Sudoku boards by solving all of them and looking them
up in a database?

2 Existence. Is it even possible to find a solution?
Can we draw maps of countries so that no two adjacent ones have
the same color with just four colors?

3 Construction. Is it possible to transmit data over a faulty
connection?
How do computers read CDs that have some scratches on them?

4 Optimization. What is the best solution to a problem? Why can’t
we do better?
How does a GPS know the best route between any two locations?
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It’s about the process 5

To solve each of these questions, you have to reason about how many of
something there are. This process is “thinking combinatorially”, and
we’re going to talk about it next!
Thinking combinatorially can sometimes make very difficult problems
much easier.



Outline

1 Motivation

2 Combinatorial Toolbox
Rule of Product
Rule of Sum
Counting by Complement

3 Combinatorial Primitives
n!
(nk)

4 Problems



Combinatorial Toolbox 6

How should you approach a combinatorial problem?

Let’s build up a “toolbox” of approaches we can take!

This may seem a little strange, but our three most powerful tools in
counting are laws of sets!
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Rule of Product 7

Definition (Rule of Product)
If we have sets X1,X2, . . .Xn then

∣X1×X2×⋯×Xn∣ = ∣X1∣× ∣X2∣×⋯× ∣Xn∣

What does this have to do with counting?

Example
How many ways can I roll two six-sided dice?

Proof.
Let D6 be the set of outcomes for rolling a die.
The outcomes of rolling two six-sided dice are members of D6×D6.
We know ∣D6∣ = ∣{1,2,3,4,5,6}∣ = 6, and ∣D6×D6∣ = ∣D6∣× ∣D6∣ by the Rule
of Product.
So, the number of outcomes is 6×6 = 36.



Rule of Product 7

Definition (Rule of Product)
If we have sets X1,X2, . . .Xn then

∣X1×X2×⋯×Xn∣ = ∣X1∣× ∣X2∣×⋯× ∣Xn∣

What does this have to do with counting?

Example
How many ways can I roll two six-sided dice?

Proof.
Let D6 be the set of outcomes for rolling a die.
The outcomes of rolling two six-sided dice are members of D6×D6.
We know ∣D6∣ = ∣{1,2,3,4,5,6}∣ = 6, and ∣D6×D6∣ = ∣D6∣× ∣D6∣ by the Rule
of Product.
So, the number of outcomes is 6×6 = 36.



Rule of Product 7

Definition (Rule of Product)
If we have sets X1,X2, . . .Xn then

∣X1×X2×⋯×Xn∣ = ∣X1∣× ∣X2∣×⋯× ∣Xn∣

What does this have to do with counting?

Example
How many ways can I roll two six-sided dice?

Proof.
Let D6 be the set of outcomes for rolling a die.
The outcomes of rolling two six-sided dice are members of D6×D6.
We know ∣D6∣ = ∣{1,2,3,4,5,6}∣ = 6, and ∣D6×D6∣ = ∣D6∣× ∣D6∣ by the Rule
of Product.
So, the number of outcomes is 6×6 = 36.



Rule of Product 7

Definition (Rule of Product)
If we have sets X1,X2, . . .Xn then

∣X1×X2×⋯×Xn∣ = ∣X1∣× ∣X2∣×⋯× ∣Xn∣

What does this have to do with counting?

Example
How many ways can I roll two six-sided dice?

Proof.
Let D6 be the set of outcomes for rolling a die.

The outcomes of rolling two six-sided dice are members of D6×D6.
We know ∣D6∣ = ∣{1,2,3,4,5,6}∣ = 6, and ∣D6×D6∣ = ∣D6∣× ∣D6∣ by the Rule
of Product.
So, the number of outcomes is 6×6 = 36.



Rule of Product 7

Definition (Rule of Product)
If we have sets X1,X2, . . .Xn then

∣X1×X2×⋯×Xn∣ = ∣X1∣× ∣X2∣×⋯× ∣Xn∣

What does this have to do with counting?

Example
How many ways can I roll two six-sided dice?

Proof.
Let D6 be the set of outcomes for rolling a die.
The outcomes of rolling two six-sided dice are members of D6×D6.

We know ∣D6∣ = ∣{1,2,3,4,5,6}∣ = 6, and ∣D6×D6∣ = ∣D6∣× ∣D6∣ by the Rule
of Product.
So, the number of outcomes is 6×6 = 36.



Rule of Product 7

Definition (Rule of Product)
If we have sets X1,X2, . . .Xn then

∣X1×X2×⋯×Xn∣ = ∣X1∣× ∣X2∣×⋯× ∣Xn∣

What does this have to do with counting?

Example
How many ways can I roll two six-sided dice?

Proof.
Let D6 be the set of outcomes for rolling a die.
The outcomes of rolling two six-sided dice are members of D6×D6.
We know ∣D6∣ = ∣{1,2,3,4,5,6}∣ = 6, and ∣D6×D6∣ = ∣D6∣× ∣D6∣ by the Rule
of Product.

So, the number of outcomes is 6×6 = 36.



Rule of Product 7

Definition (Rule of Product)
If we have sets X1,X2, . . .Xn then

∣X1×X2×⋯×Xn∣ = ∣X1∣× ∣X2∣×⋯× ∣Xn∣

What does this have to do with counting?

Example
How many ways can I roll two six-sided dice?

Proof.
Let D6 be the set of outcomes for rolling a die.
The outcomes of rolling two six-sided dice are members of D6×D6.
We know ∣D6∣ = ∣{1,2,3,4,5,6}∣ = 6, and ∣D6×D6∣ = ∣D6∣× ∣D6∣ by the Rule
of Product.
So, the number of outcomes is 6×6 = 36.



Rule of Product 8

Definition (Rule of Product)
If we have sets X1,X2, . . .Xn then

∣X1×X2×⋯×Xn∣ = ∣X1∣× ∣X2∣×⋯× ∣Xn∣

What does this have to do with counting?

Example
How many ways can I roll two six-sided dice?

Proof.
We know that there are six ways to roll a single die. To roll two dice, we
follow this procedure:

Roll one die.
Roll one die.

Each step of the procedure has six possibilities; so, multiplying them
together by the Rule of Product, we get 6×6 = 36 outcomes.



Rule of Sum 9

Definition (Disjoint Sets)
X1,X2, . . . ,Xn are pairwise disjoint sets iff

∀(i ≠ j). Xi∩X j = ∅

Definition (Rule of Sum)
If X1,X2, . . .Xn are pairwise disjoint sets, then

∣X1∪X2∪⋯∪Xn∣ = ∣X1∣+ ∣X2∣+ ⋅ ⋅ ⋅+ ∣Xn∣

Example
How many ways can I roll two six-sided dice to get a sum of 4?
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Definition (Rule of Sum)
If X1,X2, . . .Xn are pairwise disjoint sets, then

∣X1∪X2∪⋯∪Xn∣ = ∣X1∣+ ∣X2∣+ ⋅ ⋅ ⋅+ ∣Xn∣

Example
How many ways can I roll two six-sided dice to get a sum of 4?

Proof.
Note that the first roll could be 1 through 6.

We partition on these cases:
If the first roll is a 1, then the second roll is 3.
If the first roll is a 2, then the second roll is 2.
If the first roll is a 3, then the second roll is 1.
If the first roll is 4, 5, or 6, then we can never sum to 4.

Note that these cases are mutually exclusive. Furthermore, this covers all
the possible cases for the first die. Putting these together, we see that
1+1+1+0+0+0 = 3 is our answer by the Rule of Sum.
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Counting by Complement 11

Sometimes, instead of counting the things we want, we count the things
we don’t want and remove them.

Definition (Counting by Complement)
If U is the universal set, then

A = U ∖A

Example
How many binary strings of length n are there that have at least one 1.

Proof.
First, we show that there are 2n binary strings.To generate a binary
string, we use an n-step process:

Choose the 1st bit.
Choose the 2nd bit.
. . .

Profit!
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Example
How many binary strings of length n are there that have at least one 1.

Proof.
First, we show that there are 2n binary strings. To generate a binary
string, we use an n-step process:

Choose the 1st bit.
Choose the 2nd bit.
. . .

Choose the nth bit.

Since each step of this procedure has 2 options, the total number of
binary strings of length n is 2×2×⋅ ⋅ ⋅×2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

= 2n by the Rule of Product.

Now, we count how many binary strings of length n have no 1’s. We use
the same procedure as before, except, now, we only have 1 choice at each
step. It follows that there is 1 bad binary string.
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Combinatorial Primitive 13

Now that we know what we’re trying to do, let’s build up the primitives
of our language.

Think of these like if statements and for loops in programming.

We can use these to build up larger, more complicated counting
arguments!



Factorials 14

Primitive: Arranging {x1,x2, . . . ,xn}
We would like to arrange n distinct things, {x1,x2, . . . ,xn}, in a row:

⋯

How many places could we put x1?

n
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Primitive: Arranging {x1,x2, . . . ,xn}
We would like to arrange n distinct things, {x1,x2, . . . ,xn}, in a row:

x2 x3 ⋯ x1

How many places could we put x1? n
How many places could we put x2? n−1

. . .
How many places could we put xk?

n−(k−1)
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Primitive: Arranging {x1,x2, . . . ,xn}
We would like to arrange n distinct things, {x1,x2, . . . ,xn}, in a row:

xn−1 x2 x3 ⋯ x1 xk

How many places could we put x1? n
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. . .
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1

Proof.
We can arrange {x1,x2, . . . ,xn} in an n-step process, where, on step k, we
place xk. There are n−(k−1) ways to do step k, since there are that
many spots remaining. It follows that the number of ways to arrange our
set is n(n−1)⋯2(1) = n! by Rule of Product.
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Primitive: Choosing a subset of k elements of {x1,x2, . . . ,xn}
We’ve already seen this!

(n
k
) = n!

k!(n−k)!

Here’s a tempting but incorrect argument for how to calculate (nk):

Counting Combinations
To generate a subset of k elements, we take the following two steps:

(1) Arrange all n elements of the set.
(2) Get rid of the last n−k of them.

We know that there are n! ways to do the first step, and only 1 way to do
the second step. So, by the Product Rule, we see that (n

k
) = n!
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Our Procedure
(1) Arrange all n elements of the set.
(2) Get rid of the last n−k of them.

Suppose Adam wants to choose two of their favorite shapes. For
reference, Adam’s favorite shapes are:

{△,◻,♣,◇}

Our argument first generates an ordering of these shapes:

△ ◻ ♣ ◇
△ ◻ ◇ ♣
△ ♣ ◻ ◇
△ ♣ ◇ ◻
△ ◇ ◻ ♣
△ ◇ ♣ ◻
◻ △ ♣ ◇
◻ △ ◇ ♣

◻ ◇ △ ♣
◻ ◇ ♣ △
◻ ♣ ◇ △
◻ ♣ △ ◇
♣ ◻ △ ◇
♣ ◻ ◇ △
♣ ◇ ◻ △
♣ ◇ △ ◻

♣ △ ◻ ◇
♣ △ ◇ ◻
◇ ◻ △ ♣
◇ ◻ ♣ △
◇ ♣ ◻ △
◇ ♣ △ ◻
◇ △ ◻ ♣
◇ △ ♣ ◻
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Then, it throws away the last n−k:

△ ◻
△ ◻
△ ♣
△ ♣
△ ◇
△ ◇
◻ △
◻ △

◻ ◇
◻ ◇
◻ ♣
◻ ♣
♣ ◻
♣ ◻
♣ ◇
♣ ◇

♣ △
♣ △
◇ ◻
◇ ◻
◇ ♣
◇ ♣
♣ △
♣ △

Oops! We’ve counted each set of favorite shapes multiple times.

Can we be more specific?
Our argument ordered the first k shapes when we didn’t actually
want them ordered. (So, they showed up k! times.)
Our argument also ordered the remaining n−k shapes when we
didn’t want them ordered. (So, they showed up (n−k)! times.)
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Let Sk be the set of size k subsets of {x1,x2, . . . ,xn}.
Here’s another way of looking at the argument we just made. We claim
that:

n! = ∣Sk∣k!(n−k)!

The right side is a three step procedure:
Choose the first k elements of the sequence.
Arrange the first k elements of the sequence.
By choosing the first k elements of the sequence, we left behind n−k
to be the rest. Arrange those.

The result of our procedure is that we’ve arranged the elements of
{x1,x2, . . . ,xn}, and we know there are n! ways to do that.
It follows that the equality holds and ∣Sk∣ = n!

k!(n−k)! .

By convention, we call ∣Sk∣ = (
n
k
), and pronounce it “n choose k”.
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DNA 22

DNA is made up of {A,C,T,G}. How many strands of DNA of length n
are there with exactly 4 C’s?

Proof.
We count this via the following process:

Choose which 4 of the n spots to put C’s in.
For each of the remaining spots, choose between A, T , and G.

The number of ways to do the first step is (n
4
), and the number of ways

to do the other n−4 steps is 3. Using the Rule of Product, we get that
there are (n

4
)3n−4 possible strands of DNA with 4 C’s.
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there are (n

4
)3n−4 possible strands of DNA with 4 C’s.
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Counting Cards 23

How many five card hands are there with three or four Aces?

Proof.
We partition on if there are three Aces or four.

If there are three Aces, choose which Aces there are, and then choose
two non-Aces. By Rule of Product, this works out to (4

3
)(48

2
).

If there are four Aces, choose all four Aces, and then choose the
remaining card. By Rule of Product, this works out to (4

4
)(48

1
).

Note that every hand with 3 or 4 Aces must either have 3 or 4 Aces, and
that no hand can have both 3 and 4 Aces; so, these cases form a
partition.It follows, by Rule of Sum, that the number of five card hands
with three or four Aces is (4

3
)(48

2
)+(4

4
)(48

1
).
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Counting Cards Badly 24

How many five card hands are there with three or four Aces?

“Proof.”
We count the hands with the following process:

Choose three of the four Aces.
Out of the remaining 49 cards, choose 2 of them.

By the Rule of Product, the number of five card hands with three or four
Aces is (43)(

49
2 ).

This argument gives us the number 4704. Our previous (correct)
argument gave us the number 4560. This means we must be
overcounting (getting the same output more than once).

Consider {A♠,A♡,A♣,A♢,4♣}
We could have gotten this set by. . .

Choosing A♠,A♡,A♣, and then choosing A♢,4♣.
Choosing A♢,A♡,A♣, and then choosing A♠,4♣.

If a counting argument is correct, we must be able to take an
output and trace it to a particular choice pattern.
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