CS 13: Mathematical Foundations of Computing

Lecture 6 Exercises

Name:	\square
E-mail:	\square

0.

Functions on Lists	
	$\operatorname{len}([])$
$\operatorname{len}(x:: L)$	$=0$
	$\operatorname{sum}([])$
$\operatorname{sum}(x:: L)$	$=0$
	$=x+\operatorname{len}(L)$

Claim

For all $L \in$ List, where the list does not contain 0 ,

$$
\operatorname{sum}(L) \geq \operatorname{len}(L)
$$

1.

Functions on Lists

$$
\begin{aligned}
\operatorname{sum}([]) & =0 \\
\operatorname{sum}(x:: L) & =x+\operatorname{sum}(L) \\
\operatorname{sum} 2(\operatorname{acc},[]) & =\operatorname{acc} \\
\operatorname{sum} 2(\operatorname{acc}, x:: L) & =\operatorname{sum} 2(\operatorname{acc}+x, L)
\end{aligned}
$$

Claim
For all $L \in$ List and acc $\in \mathbb{N}$,

$$
\operatorname{sum}(\mathrm{L})+\operatorname{acc}=\operatorname{sum} 2(\operatorname{acc}, L)
$$

2.

Functions on Lists

