Lecture 5

Mathematical Foundations of Computing

CS 13: Mathematical Foundations of Computing

Last Time

Another Theorem

Cancellation Property \equiv_n

If gcd(c,n) = 1, then $ca \equiv_n cb \implies a \equiv_n b$

Proof.

Since gcd(c,n) = 1, it follows that there exists a c^{-1} such that $cc^{-1} + kn = 1$ for some $k \in \mathbb{Z}$.

Another Theorem

Cancellation Property \equiv_n

If gcd(c,n) = 1, then

 $ca \equiv_n cb \Longrightarrow a \equiv_n b$

Proof.

Since gcd(c,n) = 1, it follows that there exists a c^{-1} such that $cc^{-1} + kn = 1$ for some $k \in \mathbb{Z}$.

$$ca \equiv_{n} cb$$

$$c^{-1}ca \equiv_{n} c^{-1}cb \qquad [\text{Multiplying both sides by } c^{-1}]$$

$$(1-kn)a \equiv_{n} (1-kn)b \qquad [\text{Definition of } c^{-1}]$$

$$a + kna \equiv_{n} b + knb$$

$$a \equiv_{n} b \qquad [knX \equiv_{n} 0]$$

Define $Z_n^* = \{x \in \{1, \dots, n-1\} \mid \gcd(x, n) = 1\}.$

$\phi(n) = |Z_n^*|$

Define $\phi(n) = |Z_n^*| =$ "number of moduli of n that are relatively prime to n".

For n = p where p is prime?

For n = pq where $p \neq q$ and p,q are prime?

Permutation Property

Let
$$a \in \mathbb{Z}_n^*$$
. Consider $\mathbb{Z}_n^* = \{r_1, r_2, \dots, r_{\phi(n)}\}$. Let
 $a\mathbb{Z}_n^* = \{(ar_1) \mod n, (ar_2) \mod n, \dots, (ar_{\phi(n)}) \mod n\}$.
We want to show that $\mathbb{Z}_n^* = a\mathbb{Z}_n^*$.

Proof $ar_i \mod n \in Z_n^*$

It follows from the EEA that these integers exist and the corresponding equations are true: (1) $aa^{-1} + k_an = 1$ (2) $r_ir_i^{-1} + k_{r_i}n = 1$ We would like to find integers ℓ and m such that:

 $ar_i\ell + mn = 1$

Permutation Property

Let
$$a \in Z_n^*$$
. Consider $Z_n^* = \{r_1, r_2, \dots, r_{\phi(n)}\}$. Let
 $aZ_n^* = \{(ar_1) \mod n, (ar_2) \mod n, \dots, (ar_{\phi(n)}) \mod n\}$.
We want to show that $Z_n^* = aZ_n^*$.

Proof $ar_i \mod n \in Z_n^*$

It follows from the EEA that these integers exist and the corresponding equations are true: (1) $aa^{-1} + k_an = 1$ (2) $r_ir_i^{-1} + k_{r_i}n = 1$ We would like to find integers ℓ and m such that:

$$ar_i\ell + mn = 1$$

Solving for aa^{-1} and $r_i r_i^{-1}$ and multiplying the results together:

$$aa^{-1}r_{i}r_{i}^{-1} = (1 - k_{a}n)(1 - k_{r_{i}}n)$$

$$aa^{-1}r_{i}r_{i}^{-1} = 1 - k_{a}n - k_{r_{i}}n + k_{a}k_{r_{i}}n^{2}$$

$$aa^{-1}r_{i}r_{i}^{-1} = (1 - n(k_{a} + k_{r_{i}} - k_{a}k_{r_{i}}n))$$

$$ar_{i}(a^{-1}r_{i}^{-1}) + n(k_{a} + k_{r_{i}} - k_{a}k_{r_{i}}n) = 1$$

Permutation Property

Let $a \in Z_n^*$. Consider $Z_n^* = \{r_1, r_2, \dots, r_{\phi(n)}\}$. Let $aZ_n^* = \{(ar_1) \mod n, (ar_2) \mod n, \dots, (ar_{\phi(n)}) \mod n\}$. We want to show that $Z_n^* = aZ_n^*$.

Proof of Uniqueness

Now, we prove $(ar_i \mod n) \neq (ar_j \mod n)$ for $i \neq j$. To do this, we show that when the moduli equal, $r_i = r_j$.

Permutation Property

Let $a \in Z_n^*$. Consider $Z_n^* = \{r_1, r_2, \dots, r_{\phi(n)}\}$. Let $aZ_n^* = \{(ar_1) \mod n, (ar_2) \mod n, \dots, (ar_{\phi(n)}) \mod n\}$. We want to show that $Z_n^* = aZ_n^*$.

Proof of Uniqueness

Now, we prove $(ar_i \mod n) \neq (ar_j \mod n)$ for $i \neq j$. To do this, we show that when the moduli equal, $r_i = r_j$. Suppose $ar_i \mod n = ar_j \mod n$. Then, $ar_i \equiv_n ar_j$. By the cancellation property from earlier this lecture, since gcd(a,n) = 1, we have $r_i \equiv_n r_j$ as required. We've already shown that

$$Z_n^* = a Z_n^*$$

Euler's Theorem

We've already shown that

$$Z_n^* = a Z_n^*$$

Take the products of the elements of both sides:

 $\prod_{x \in \mathbb{Z}_n^*} x \equiv_n \prod_{x \in a\mathbb{Z}_n^*} x$

Euler's Theorem

We've already shown that

$$Z_n^* = a Z_n^*$$

Take the products of the elements of both sides:

 $\prod_{x \in Z_n^*} x \equiv_n \prod_{x \in aZ_n^*} x$

Re-label terms:

$$\prod_{x \in \mathbb{Z}_n^*} x \equiv_n a^{\phi(n)} \prod_{x \in \mathbb{Z}_n^*} x$$

Euler's Theorem

We've already shown that

$$Z_n^* = a Z_n^*$$

Take the products of the elements of both sides:

 $\prod_{x \in \mathbb{Z}_n^*} x \equiv_n \prod_{x \in a\mathbb{Z}_n^*} x$

Re-label terms:

$$\prod_{x \in Z_n^*} x \equiv_n a^{\phi(n)} \prod_{x \in Z_n^*} x$$

Cancellation Theorem:

$$1 \equiv_n a^{\phi(n)}$$

$$1\equiv_n a^{\phi(n)}$$