Adam Blank

Autumn 2017

Foundations of Computing I

CSE 311: Foundations of Computing

Lecture 10: Modular Arithmetic

Number Theory (and applications to computing)

- Branch of Mathematics with direct relevance to computing
- Many significant applications
 - Cryptography
 - Hashing
 - Security
- Important tool set

- Arithmetic over a finite domain
- In computing, almost all computations are over a finite domain

I'm ALIVE!

I'm ALIVE!

```
public class Test {
   final static int SEC IN YEAR = 364*24*60*60*100;
   public static void main(String args[]) {
       System.out.println(
          "I will be alive for at least " +
          SEC IN YEAR * 101 + " seconds."
      );
         ----jGRASP exec: java Test
        I will be alive for at least -186619904 seconds.
          ----jGRASP: operation complete.
```

Divisibility

Definition: "a divides b"

For
$$a \in \mathbb{Z}, b \in \mathbb{Z}$$
 with $a \neq 0$:
 $a \mid b \leftrightarrow \exists (k \in \mathbb{Z}) b = ka$

Check Your Understanding. Which of the following are true?

Divisibility

Definition: "a divides b"

For
$$a \in \mathbb{Z}, b \in \mathbb{Z}$$
 with $a \neq 0$:
 $a \mid b \leftrightarrow \exists (k \in \mathbb{Z}) b = ka$

Check Your Understanding. Which of the following are true?

$$5 | 1
5 | 1
5 | 1 iff 1 = 5k
25 | 1 iff 1 = 25k
1 | 5 iff 5 = 1k
$$25 | 1 iff 1 = 25k
5 | 5 iff 5 = 5k
0 | 1
1 | 25 iff 25 = 1k
0 | 1 iff 1 = 0k
2 | 3 iff 3 = 2k
$$25 | 3 | 2 iff 2 = 3k
0 | 1 iff 1 = 0k
2 | 3 iff 3 = 2k$$$$$$

Division Theorem

Division Theorem

For $a \in \mathbb{Z}$, $d \in \mathbb{Z}^+$: Then, there exists *unique* integers q, r with $0 \le r < d$ such that a = dq + r.

To put it another way, if we take a/d, we get a dividend

and a remainder: $q = a \operatorname{div} d$ $r = a \operatorname{mod} d$

Note: $r \ge 0$ even if a < 0. Not quite the same as $a \ \% \ d$.

Division Theorem

Division Theorem

For $a \in \mathbb{Z}$, $d \in \mathbb{Z}^+$: Then, there exists *unique* integers q, r with $0 \le r < d$ such that a = dq + r.

To put it another way, if we take a/d, we get a dividend

and a remainder: $q = a \operatorname{div} d$ $r = a \operatorname{mod} d$

```
public class Test2 {
    public static void main(String args[]) {
        int a = -5;
        int d = 2;
        System.out.println(a % d);
    }
}
----jGRASP exec: java Test2
-1
Note: r ≥ 0 even if a < 0.
Not quite the same as a % d.</pre>
```

 $a +_7 b = (a + b) \mod 7$ $a \times_7 b = (a \times b) \mod 7$

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

х	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Modular Arithmetic

Definition: "a is congruent to b modulo m" For $a \in \mathbb{Z}, b \in \mathbb{Z}, m \in \mathbb{Z}$: $a \equiv {}_{m}b \leftrightarrow m \mid (a - b)$

Check Your Understanding. What do each of these mean? When are they true?

 $A \equiv_2 0$

1 ≡₄ 0

A ≡₁₇ -1

Modular Arithmetic

Definition: "a is congruent to b modulo m" For $a \in \mathbb{Z}, b \in \mathbb{Z}, m \in \mathbb{Z}$: $a \equiv {}_{m}b \leftrightarrow m \mid (a - b)$

Check Your Understanding. What do each of these mean? When are they true?

 $A \equiv_2 0$ This statement is the same as saying "A is even"; so, any A that is even (including negative even numbers) will work.

 $1 \equiv_4 0$ This statement is false. If we take it mod 1 instead, then the statement is true.

 $A \equiv_{17} -1$ If A = 17x - 1 = 17x + 16, then it works. Note that (m - 1) mod m = ((m mod m) + (-1 mod m)) mod m = (0 + -1) mod m = -1 mod m

Modular Arithmetic: A Property

Let a and b be integers, and let m be a positive integer. Then, $a \equiv_m b$ if and only if a mod m = b mod m.

Suppose that $a \equiv_m b$.

Suppose that a mod $m = b \mod m$.

Let a and b be integers, and let m be a positive integer. Then, $a \equiv_m b$ if and only if a mod m = b mod m.

```
Suppose that a \equiv_m b.
   Then, m \mid (a - b) by definition of congruence.
   So, a - b = km for some integer k by definition of divides.
   Therefore, a = b+km.
   Taking both sides modulo m we get:
           a mod m=(b+km) \mod m = b \mod m.
Suppose that a mod m = b \mod m.
    By the division theorem, a = mq + (a \mod m) and
                             b = ms + (b \mod m) for some integers q,s.
   Then, a - b = (mq + (a \mod m)) - (mr + (b \mod m))
               = m(q - r) + (a \mod m - b \mod m)
               = m(q - r) since a mod m = b \mod m
   Therefore, m | (a-b) and so a \equiv_m b.
```

Modular Arithmetic: Another Property

Let m be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$

Modular Arithmetic: Another Property

Let m be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$

Suppose $a \equiv_m b$ and $c \equiv_m d$. Unrolling definitions gives us some k such that a - b = km, and some j such that c - d = jm.

Adding the equations together gives us (a + c) - (b + d) = m(k + j). Now, re-applying the definition of mod gives us $a + c \equiv_m b + d$.

Modular Arithmetic: Another-nother Property

Let m be a positive integer. If $a \equiv_m b$ and $c \equiv d$, then $ac \equiv_m bd$

Modular Arithmetic: Another-nother Property

Let m be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$

Suppose $a \equiv_m b$ and $c \equiv_m d$. Unrolling definitions gives us some k such that a - b = km, and some j such that c - d = jm.

Then, a = km + b and c = jm + d. Multiplying both together gives us $ac = (km + b)(jm + d) = kjm^2 + kmd + jmb + bd$.

Re-arranging gives us ac - bd = m(kjm + kd + jb). Using the definition of mod gives us $ac \equiv_m bd$.

Let n be an integer. Prove that $n^2 \equiv_4 0$ or $n^2 \equiv_4 1$

Let n be an integer. Prove that $n^2 \equiv_4 0$ or $n^2 \equiv_4 1$

Let's start by looking a a small example:

 $0^{2} = 0 \equiv_{4} 0$ $1^{2} = 1 \equiv_{4} 1$ $2^{2} = 4 \equiv_{4} 0$ $3^{2} = 9 \equiv_{4} 1$ $4^{2} = 16 \equiv_{4} 0$

Let n be an integer. Prove that $n^2 \equiv_4 0$ or $n^2 \equiv_4 1$

Let's start by looking a a small example:

 $0^{2} = 0 \equiv_{4} 0$ $1^{2} = 1 \equiv_{4} 1$ $2^{2} = 4 \equiv_{4} 0$ $3^{2} = 9 \equiv_{4} 1$ $4^{2} = 16 \equiv_{4} 0$

It looks like

 $\begin{array}{l} n \equiv_2 0 \rightarrow n^2 \equiv_4 0, \text{ and} \\ n \equiv_2 1 \rightarrow n^2 \equiv_4 1. \end{array}$

```
Let n be an integer.
Prove that n^2 \equiv_4 0 or n^2 \equiv_4 1
```

Case 1 (n is even):

Case 2 (n is odd):

Let n be an integer. Prove that $n^2 \equiv_4 0$ or $n^2 \equiv_4 1$ Let's start by looking a a small example: Case 1 (n is even): $0^2 = 0 \equiv_4 0$ Suppose n $\equiv_2 0$. $1^2 = 1 \equiv_4 1$ Then, n = 2k for some k. $2^2 = 4 \equiv_4 0$ So, $n^2 = (2k)^2 = 4k^2$. So, by $3^2 = 9 \equiv_4 1$ definition of congruence, $4^2 = 16 \equiv_4 0$ n² ≡₄ 0. It looks like $n \equiv_2 0 \rightarrow n^2 \equiv_4 0$, and Case 2 (n is odd): $n \equiv_2 1 \rightarrow n^2 \equiv_4 1.$ Suppose $n \equiv_2 1$. Then, n = 2k + 1 for some k. So, $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 4(k^2 + k) + 1$. So. by definition of congruence, $n^2 \equiv_4 1$.