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CSE 311: Foundations of Computing

Lecture 10: Modular Arithmetic



Number Theory (and applications to computing)

• Branch of Mathematics with direct relevance to 
computing

• Many significant applications
– Cryptography
– Hashing
– Security

• Important tool set



Modular Arithmetic

• Arithmetic over a finite domain

• In computing, almost all computations are over a 
finite domain



I’m ALIVE!

public class Test {
final static int SEC_IN_YEAR = 364*24*60*60*100;
public static void main(String args[]) {

System.out.println(
“I will be alive for at least ” +
SEC_IN_YEAR * 101 + “ seconds.”

);
}

}



I’m ALIVE!

public class Test {
final static int SEC_IN_YEAR = 364*24*60*60*100;
public static void main(String args[]) {

System.out.println(
“I will be alive for at least ” +
SEC_IN_YEAR * 101 + “ seconds.”

);
}

}

Prints	:	“I	will	be	alive	for	at	least	-186619904	seconds.”



Divisibility

Check Your Understanding.  Which of the following are true?

5 | 1 25 | 5 5 | 5 3 |2

1 | 5 5 | 25 0 | 1 2 | 3

For	𝑎 ∈ ℤ, 𝑏 ∈ ℤ with	𝑎 ≠ 0:
𝑎	|	𝑏 ↔ ∃ 𝑘 ∈ ℤ 	b = ka

Definition:	“a	divides	b”



Divisibility

Check Your Understanding.  Which of the following are true?

5 | 1 25 | 5 5 | 5 3 |2

1 | 5 5 | 25 0 | 1 2 | 3

5 | 1 iff 1 = 5k

1 | 5 iff 5 = 1k

25 | 1 iff 1 = 25k

1 | 25 iff 25 = 1k

5 | 5 iff 5 = 5k

0 | 1 iff 1 = 0k

3 | 2 iff 2 = 3k

2 | 3 iff 3 = 2k

For	𝑎 ∈ ℤ, 𝑏 ∈ ℤ with	𝑎 ≠ 0:
𝑎	|	𝑏 ↔ ∃ 𝑘 ∈ ℤ 	b = ka

Definition:	“a	divides	b”



To put it another way, if we take a/d, we get a dividend

and a remainder:

Division Theorem

q = a div d r = a mod d

Note: r ≥ 0 even if a < 0.  
Not quite the same as a % d.

For	𝑎 ∈ ℤ, 𝑑 ∈ ℤ2:
Then,	there	exists	unique integers	q,	r	with	0 ≤ 𝑟 < 𝑑
such	that	𝑎 = 𝑑𝑞 + 𝑟.

Division	Theorem



To put it another way, if we take a/d, we get a dividend

and a remainder:

Division Theorem

q = a div d r = a mod d

Note: r ≥ 0 even if a < 0.  
Not quite the same as a % d.

public class Test2 {
public static void main(String args[]) {

int a = -5;
int d = 2;
System.out.println(a % d);

}
}

For	𝑎 ∈ ℤ, 𝑑 ∈ ℤ2:
Then,	there	exists	unique integers	q,	r	with	0 ≤ 𝑟 < 𝑑
such	that	𝑎 = 𝑑𝑞 + 𝑟.

Division	Theorem



Arithmetic, mod 7

a +7 b = (a + b) mod 7
a ´7 b = (a ´ b) mod 7

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

X 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1



Modular Arithmetic

For	𝑎 ∈ ℤ, 𝑏 ∈ ℤ,m ∈ ℤ:
𝑎 ≡ 𝑚	

𝑏	 ↔ 𝑚	|	(𝑎	 − 𝑏)

Definition:	“a	is	congruent	to	b	modulo	m”

Check Your Understanding.  What do each of these mean?
When are they true?

A ≡2 0

1 ≡4 0

A ≡17 -1



Modular Arithmetic

For	𝑎 ∈ ℤ, 𝑏 ∈ ℤ,m ∈ ℤ:
𝑎 ≡ 𝑚	

𝑏	 ↔ 𝑚	|	(𝑎	 − 𝑏)

Definition:	“a	is	congruent	to	b	modulo	m”

Check Your Understanding.  What do each of these mean?
When are they true?

A ≡2 0

1 ≡4 0

A ≡17 -1

This statement is the same as saying “A is even”; so, any A that 
is even (including negative even numbers) will work.

This statement is false.  If we take it mod 1 
instead, then the statement is true.

If A = 17x – 1 = 17x + 16, then it works.  
Note that (m – 1) mod m = ((m mod m) + (-1 mod m)) mod m

= (0 + -1) mod m = -1 mod m



Modular Arithmetic: A Property

Let a and b be integers, and let m be a positive integer.  
Then, a ≡m b if and only if a mod m = b mod m.

Suppose	that a	≡m b.
Then,	m	|	(a	– b)	by	definition	of	congruence.
So,	a	– b	=	km	for	some	integer	k	by	definition	of	divides.
Therefore,	a	=	b+km.	
Taking	both	sides	modulo	m	we	get:

a	mod	m=(b+km)	mod	m	=	b	mod	m.
Suppose	that	a	mod	m	=	b	mod	m.

By	the	division	theorem,	a	=	mq +	(a	mod	m)	and
b	=	ms +	(b	mod	m)	for	some	integers	q,s.

Then,	a	– b	=	(mq +	(a	mod	m))	– (mr +	(b	mod	m))
=	m(q	– r)	+	(a	mod	m	– b	mod	m)
=	m(q	– r)	since	a	mod	m	=	b	mod	m

Therefore,	m	|(a-b)		and	so		a ≡	b (mod	m).



Modular Arithmetic: A Property

Let a and b be integers, and let m be a positive integer.  
Then, a ≡m b if and only if a mod m = b mod m.

Suppose	that a	≡m b.
Then,	m	|	(a	– b)	by	definition	of	congruence.
So,	a	– b	=	km	for	some	integer	k	by	definition	of	divides.
Therefore,	a	=	b+km.	
Taking	both	sides	modulo	m	we	get:

a	mod	m=(b+km)	mod	m	=	b	mod	m.
Suppose	that	a	mod	m	=	b	mod	m.

By	the	division	theorem,	a	=	mq +	(a	mod	m)	and
b	=	ms +	(b	mod	m)	for	some	integers	q,s.

Then,	a	– b	=	(mq +	(a	mod	m))	– (mr +	(b	mod	m))
=	m(q	– r)	+	(a	mod	m	– b	mod	m)
=	m(q	– r)	since	a	mod	m	=	b	mod	m

Therefore,	m	|	(a-b)		and	so		a ≡m b.



Modular Arithmetic: Another Property

Let m be a positive integer.  If a ≡m b and c ≡m d, 
then a + c ≡m b + d



Modular Arithmetic: Another Property

Let m be a positive integer.  If a ≡m b and c ≡m d, 
then a + c ≡m b + d

Suppose	a	≡m b	and	c	≡m d.		Unrolling	definitions	gives	us	some	k	
such	that	a	– b	=	km,	and	some	j	such	that	c	– d	=	jm.

Adding	the	equations	together	gives	us	(a	+	c)	– (b	+	d)	=	m(k	+	j).		
Now,	re-applying	the	definition	of	mod	gives	us	a	+	c	≡m b	+	d.



Modular Arithmetic: Another-nother Property

Let m be a positive integer.  
If a ≡m b and c ≡ d, then ac ≡m bd



Modular Arithmetic: Another-nother Property

Let m be a positive integer.  
If a ≡m b and c ≡m d, then ac ≡m bd

Suppose	a	≡m b	and	c	≡m d.		Unrolling	definitions	gives	us	some	k	
such	that	a	– b	=	km,	and	some	j	such	that	c	– d	=	jm.

Then,	a	=	km	+	b	and	c	=	jm +	d.		Multiplying	both	together gives	
us	ac	=	(km	+	b)(jm +	d)	=	kjm2 +	kmd +	jmb +	bd.

Re-arranging	gives	us	ac	– bd =	m(kjm +	kd +	jb).		Using	the
definition	of	mod	gives	us	ac	≡m bd.



Example

Let n be an integer.
Prove that n2 ≡4 0 or n2 ≡4 1



Example

Let n be an integer.
Prove that n2 ≡4 0 or n2 ≡4 1

Let’s	start	by	looking	a	a	small	example:
02 =	0			≡4 0
12 =	1	≡4 1
22 =	4	≡4 0
32 =	9	≡4 1
42 =	16	≡4 0



Example

Let n be an integer.
Prove that n2 ≡4 0 or n2 ≡4 1

Let’s	start	by	looking	a	a	small	example:
02 =	0			≡4 0
12 =	1	≡4 1
22 =	4	≡4 0
32 =	9	≡4 1
42 =	16	≡4 0

It looks like 
n ≡2 0 → n2 ≡4 0, and  
n ≡2 1 → n2 ≡4 1.



Example

Let n be an integer.
Prove that n2 ≡4 0 or n2 ≡4 1

Case	1	(n	is	even):

Case	2	(n	is	odd):



Example

Let n be an integer.
Prove that n2 ≡4 0 or n2 ≡4 1

Let’s	start	by	looking	a	a	small	example:
02 =	0			≡4 0
12 =	1	≡4 1
22 =	4	≡4 0
32 =	9	≡4 1
42 =	16	≡4 0

It looks like 
n ≡2 0 → n2 ≡4 0, and  
n ≡2 1 → n2 ≡4 1.

Case	1	(n	is	even):
Suppose	n	≡2 0.
Then,	n	=	2k	for	some	k.
So,	n2 =	(2k)2 =	4k2.		So,	by	
definition	of	congruence,	
n2 ≡4 0.

Case	2	(n	is	odd):
Suppose	n	≡2 1.		
Then,	n	=	2k	+	1	for	some	k.
So,	n2 =	(2k	+	1)2 =	4k2 +	4k	+	1	=	4(k2 +	k)	+	1.		 So,	

by	definition	of	congruence,	n2 ≡4 1.


