

Foundations of Computing I

CSE 311: Foundations of Computing

Lecture 10: Modular Arithmetic

Number Theory (and applications to computing)

- Branch of Mathematics with direct relevance to computing
- Many significant applications
- Cryptography
- Hashing
- Security
- Important tool set

Modular Arithmetic

- Arithmetic over a finite domain
- In computing, almost all computations are over a finite domain

I'm ALIVE!

```
public class Test {
    final static int SEC_IN_YEAR = 364*24*60*60*100;
    public static void main(String args[]) {
    System.out.println(
        "I will be alive for at least " +
    SEC_IN_YEAR * 101 + " seconds."
        );
    }
}
```


I'm ALIVE!

```
public class Test {
    final static int SEC_IN_YEAR = 364*24*60*60*100;
    public static void main(String args[]) {
    System.out.println(
        "I will be alive for at least " +
    SEC_IN_YEAR * 101 + " seconds."
    );
    }
}
```

```
----jGRASP exec: java Test
I will be alive for at least -186619904 seconds.
    ----jGRASP: operation complete.
```


Divisibility

Definition: "a divides b "
For $a \in \mathbb{Z}, b \in \mathbb{Z}$ with $a \neq 0$:
$\quad a \mid b \leftrightarrow \exists(k \in \mathbb{Z}) \mathrm{b}=\mathrm{ka}$

Check Your Understanding. Which of the following are true?
5|1
25|5
5|5
3|2
1|5
5|25
0 | 1
2 | 3

Divisibility

Definition: "a divides $\mathrm{b}^{\prime \prime}$
For $a \in \mathbb{Z}, b \in \mathbb{Z}$ with $a \neq 0$:
$\quad a \mid b \leftrightarrow \exists(k \in \mathbb{Z}) \mathrm{b}=\mathrm{ka}$

Check Your Understanding. Which of the following are true?
$5 \mid 1$
$5 \mid 1$ iff $1=5 k$
$1|5|_{1} 5$ iff $5=1 k$

25|5
25 | 1 iff $1=25 k$

1 | 25 iff $25=1 k$

5 | 5 iff $5=5 k$

0 | 1
2|3
0 | 1 iff $1=0 k$
2 | 3 iff $3=2 k$

Division Theorem

Division Theorem

For $a \in \mathbb{Z}, d \in \mathbb{Z}^{+}$:

Then, there exists unique integers q, r with $0 \leq r<d$ such that $a=d q+r$.

To put it another way, if we take a / d, we get a dividend and a remainder: $q=a \operatorname{div} d \quad r=a \bmod d$

Division Theorem

Division Theorem

For $a \in \mathbb{Z}, d \in \mathbb{Z}^{+}$:
Then, there exists unique integers q, r with $0 \leq r<d$ such that $a=d q+r$.

To put it another way, if we take a / d, we get a dividend and a remainder: $q=a \operatorname{div} d \quad r=a \bmod d$

```
public class Test2 {
    public static void main(String args[]) {
        int a = -5;
        int d = 2;
        System.out.println(a % d);
    }
}
```

jGRASP exec: java Test2
jGRASP: operation complete.

Note: $\mathrm{r} \geq 0$ even if $\mathrm{a}<0$. Not quite the same as a $\% \mathrm{~d}$.

Arithmetic, mod 7

$$
\begin{aligned}
& a++_{7} b=(a+b) \bmod 7 \\
& a \times_{7} b=(a \times b) \bmod 7
\end{aligned}
$$

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Modular Arithmetic

Definition: "a is congruent to b modulo m "
For $a \in \mathbb{Z}, b \in \mathbb{Z}, \mathrm{~m} \in \mathbb{Z}$:
$\quad a \equiv{ }_{m} b \leftrightarrow m \mid(a-b)$

Check Your Understanding. What do each of these mean? When are they true?
$A \equiv_{2} 0$
$1 \equiv_{4} 0$
$A \equiv_{17}-1$

Modular Arithmetic

Definition: "a is congruent to b modulo m"

For $a \in \mathbb{Z}, b \in \mathbb{Z}, \mathrm{~m} \in \mathbb{Z}$:

$$
a \equiv{ }_{m} b \leftrightarrow m \mid(a-b)
$$

Check Your Understanding. What do each of these mean? When are they true?
$A \equiv{ }_{2} 0$
This statement is the same as saying "A is even"; so, any A that is even (including negative even numbers) will work.

$$
1 \equiv_{4} 0
$$

This statement is false. If we take it mod 1 instead, then the statement is true.
$A \equiv_{17}-1$
If $A=17 x-1=17 x+16$, then it works.
Note that $(m-1) \bmod m=((m \bmod m)+(-1 \bmod m)) \bmod m$

$$
=(0+-1) \bmod m=-1 \bmod m
$$

Modular Arithmetic: A Property

Let a and b be integers, and let m be a positive integer. Then, $a \equiv_{m} b$ if and only if a mod $m=b \bmod m$.
Suppose that $\mathrm{a} \equiv_{\mathrm{m}} \mathrm{b}$.

Suppose that $a \bmod m=b \bmod m$.

Modular Arithmetic: A Property

Let a and b be integers, and let m be a positive integer. Then, $a \equiv_{m} b$ if and only if a mod $m=b \bmod m$.
Suppose that $a \equiv_{m} b$.
Then, $\mathrm{m} \mid(\mathrm{a}-\mathrm{b})$ by definition of congruence.
So, $a-b=k m$ for some integer k by definition of divides.
Therefore, $\mathrm{a}=\mathrm{b}+\mathrm{km}$.
Taking both sides modulo m we get: a $\bmod m=(b+k m) \bmod m=b \bmod m$.
Suppose that a $\bmod \mathrm{m}=\mathrm{b} \bmod \mathrm{m}$.
By the division theorem, $a=m q+(a \bmod m)$ and

$$
b=m s+(b \bmod m) \text { for some integers } q, s .
$$

Then, $\mathrm{a}-\mathrm{b}=(\mathrm{mq}+(\mathrm{a} \bmod \mathrm{m}))-(\mathrm{mr}+(\mathrm{b} \bmod \mathrm{m}))$

$$
\begin{aligned}
& =m(q-r)+(a \bmod m-b \bmod m) \\
& =m(q-r) \text { since } a \bmod m=b \bmod m
\end{aligned}
$$

Therefore, $\mathrm{m} \mid(\mathrm{a}-\mathrm{b})$ and so $a \equiv_{\mathrm{m}} b$.

Modular Arithmetic: Another Property

Let m be a positive integer. If $\mathrm{a} \equiv_{\mathrm{m}} \mathrm{b}$ and $\mathrm{c} \equiv_{\mathrm{m}} \mathrm{d}$, then $\mathbf{a}+\mathbf{c} \equiv_{\mathrm{m}} \mathbf{b} \mathbf{+} \mathbf{d}$

Modular Arithmetic: Another Property

Let m be a positive integer. If $\mathrm{a} \equiv_{\mathrm{m}} \mathrm{b}$ and $\mathrm{c} \equiv_{\mathrm{m}} \mathrm{d}$, then $\mathbf{a}+\mathbf{c} \equiv_{\mathbf{m}} \mathbf{b}+\mathbf{d}$

Suppose $\mathrm{a} \equiv_{\mathrm{m}} \mathrm{b}$ and $\mathrm{c} \equiv_{\mathrm{m}} \mathrm{d}$. Unrolling definitions gives us some k such that $a-b=k m$, and some j such that $c-d=j m$.

Adding the equations together gives us $(a+c)-(b+d)=m(k+j)$. Now, re-applying the definition of mod gives us $a+c \equiv_{m} b+d$.

Modular Arithmetic: Another-nother Property

Let m be a positive integer.
If $a \equiv_{\mathrm{m}} \mathrm{b}$ and $\mathrm{c} \equiv \mathrm{d}$, then $\mathbf{a c} \equiv_{\mathrm{m}} \mathbf{b d}$

Modular Arithmetic: Another-nother Property

Let m be a positive integer.
If $a \equiv_{m} b$ and $c \equiv_{m} d$, then $\mathbf{a c} \equiv_{m} \mathbf{b d}$

Suppose $\mathrm{a} \equiv_{\mathrm{m}} \mathrm{b}$ and $\mathrm{c} \equiv_{\mathrm{m}} \mathrm{d}$. Unrolling definitions gives us some k such that $a-b=k m$, and some j such that $c-d=j m$.

Then, $\mathrm{a}=\mathrm{km}+\mathrm{b}$ and $\mathrm{c}=\mathrm{jm}+\mathrm{d}$. Multiplying both together gives $u s a c=(k m+b)(j m+d)=k j m^{2}+k m d+j m b+b d$.

Re-arranging gives us ac $-\mathrm{bd}=\mathrm{m}(\mathrm{kjm}+\mathrm{kd}+\mathrm{jb})$. Using the definition of mod gives us ac \equiv_{m} bd.

Example

Let n be an integer.
Prove that $n^{2} \Xi_{4} 0$ or $n^{2} \Xi_{4} 1$

Example

Let n be an integer.
Prove that $n^{2} \Xi_{4} 0$ or $n^{2} \Xi_{4} 1$
Let's start by looking a a small example:

$$
\begin{gathered}
0^{2}=0 \quad \equiv_{4} 0 \\
1^{2}=1 \equiv_{4} 1 \\
2^{2}=4 \equiv_{4} 0 \\
3^{2}=9 \equiv_{4} 1 \\
4^{2}=16 \equiv_{4} 0
\end{gathered}
$$

Example

Let n be an integer.
Prove that $n^{2} \Xi_{4} 0$ or $n^{2} \Xi_{4} 1$
Let's start by looking a a small example:

$$
\begin{gathered}
0^{2}=0 \quad \equiv_{4} 0 \\
1^{2}=1 \equiv_{4} 1 \\
2^{2}=4 \equiv_{4} 0 \\
3^{2}=9 \equiv_{4} 1 \\
4^{2}=16 \equiv_{4} 0
\end{gathered}
$$

It looks like

$$
\begin{aligned}
& n \equiv_{2} 0 \rightarrow n^{2} \equiv_{4} 0, \text { and } \\
& n \equiv_{2} 1 \rightarrow n^{2} \equiv_{4} 1 .
\end{aligned}
$$

Example

Let n be an integer.
Prove that $n^{2} \Xi_{4} 0$ or $n^{2} \Xi_{4} 1$
Case 1 (n is even):

Case 2 (n is odd):

Example

Let n be an integer.
Prove that $\mathrm{n}^{2} \Xi_{4} 0$ or $\mathrm{n}^{2} \Xi_{4} 1$
Case 1 (n is even):
Suppose $\mathrm{n} \equiv_{2} 0$.
Then, $n=2 k$ for some k.
So, $n^{2}=(2 k)^{2}=4 k^{2}$. So, by
definition of congruence, $\mathrm{n}^{2} \equiv_{4} 0$.

Case 2 (n is odd):
Suppose $\mathrm{n} \equiv_{2} 1$.
Let's start by looking a a small example:

$$
\begin{gathered}
0^{2}=0 \quad \equiv_{4} 0 \\
1^{2}=1 \equiv_{4} 1 \\
2^{2}=4 \equiv_{4} 0 \\
3^{2}=9 \Xi_{4} 1 \\
4^{2}=16 \Xi_{4} 0
\end{gathered}
$$

It looks like

$$
\begin{aligned}
& n \equiv_{2} 0 \rightarrow n^{2} \equiv_{4} 0, \text { and } \\
& n \equiv_{2} 1 \rightarrow n^{2} \equiv_{4} 1 .
\end{aligned}
$$

Then, $n=2 k+1$ for some k.
So, $n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=4\left(k^{2}+k\right)+1$. So,
by definition of congruence, $n^{2} \equiv_{4} 1$.

