CS 13: Mathematical Foundations of Computing

Lecture 2 Exercises Solutions

Prime Numbers

Claim

Every integer $n \geq 2$ has a prime divisor.

Solution:

We go by strong induction.
Base Case: 2 is prime; so 2 is a prime divisor of 2 .
Induction Hypothesis: Suppose the claim is true for all ℓ such that $\ell \leq k$ for some $k \geq 2$.
Induction Step: We go by cases:

- $k+1$ is prime. Then, $k+1$ is a prime divisor of $k+1$.
- $k+1$ is composite. Then, $k+1=a b$ for some $a, b<k+1$ by definition of composite. Then, since $a<k+1$, the IH applies, and a has a prime divisor. All divisors of a are also divisors of $k+1$; so, $k+1$ has a prime divisor.

Making Change

Claim

Suppose we have infinitely many 4 cent coins and 5 cent coins. Prove that we can make change for any $n \in \mathbb{N}$ where $n \geq 12$.

Solution:

We go by strong induction.

Base Cases:

- $12=4 * 3+0 * 5$
- $13=4 * 2+1 * 5$
- $14=4 * 1+2 * 5$
- $15=4 * 0+3 * 5$

Induction Hypothesis: Suppose the claim is true for all ℓ such that $\ell \leq k$ for some $k \geq 15$.
Induction Step: Note $k-3=4 a+5 b$ for some $a, b \in \mathbb{N}$ by the IH becaquse $k \geq 15$. Then, $k+1=4 a+5 b+4$.
So, $k+1=4(a+1)+5 b$ which is what we were trying to prove.

