CS 13: Mathematical Foundations of Computing

Lecture 2 Exercises Solutions

Prime Numbers

Claim

Every integer $n \ge 2$ has a prime divisor.

Solution:

We go by strong induction.

Base Case: 2 is prime; so 2 is a prime divisor of 2. **Induction Hypothesis:** Suppose the claim is true for all ℓ such that $\ell \leq k$ for some $k \geq 2$. **Induction Step:** We go by cases:

- k+1 is prime. Then, k+1 is a prime divisor of k+1.
- k + 1 is composite. Then, k + 1 = ab for some a, b < k + 1 by definition of composite. Then, since a < k + 1, the IH applies, and a has a prime divisor. All divisors of a are also divisors of k + 1; so, k + 1 has a prime divisor.

Making Change

Claim

```
Suppose we have infinitely many 4 cent coins and 5 cent coins. Prove that we can make change for any n \in \mathbb{N} where n \ge 12.
```

Solution:

We go by strong induction. **Base Cases:**

- 12 = 4 * 3 + 0 * 5
- 13 = 4 * 2 + 1 * 5
- 14 = 4 * 1 + 2 * 5
- 15 = 4 * 0 + 3 * 5

Induction Hypothesis: Suppose the claim is true for all ℓ such that $\ell \leq k$ for some $k \geq 15$. **Induction Step:** Note k-3 = 4a+5b for some $a, b \in \mathbb{N}$ by the IH becaques $k \geq 15$. Then, k+1 = 4a+5b+4. So, k+1 = 4(a+1) + 5b which is what we were trying to prove.