CS

Mathematical Foundations of Computing

Number Representation

Definition (Symbols and Strings)

- Let Σ be a set of symbols.
- Let $\Sigma^{+}=\Sigma \cup \Sigma^{2} \cup \Sigma^{3} \cup \cdots$.
Σ is called an alphabet; $x \in \Sigma$ is a symbol, and $s \in \Sigma^{+}$is a string (note that we're omitting the "empty string" in our definition here).

Example (Binary Numbers)

Let $\Sigma=\{0,1\}$. Then, $\Sigma^{+}=\{0,1\} \cup\{00,01,10,11\} \cup \cdots$. That is, Σ^{+}is the set of all binary numbers.

Connection to CS 21
You'll see the ideas of grammars, decision problems, and regular expressions which are all fundamentally based on this definition of strings.

Example (Unary Numbers)

Let $\Sigma=\{\Delta\}$. Then, $\Sigma^{+}=\{\Delta\} \cup\{\Delta \Delta\} \cup \cdots$. That is, Σ^{+}is the set of all numbers represented with a single symbol (i.e., unary numbers).

Example (Binary Numbers)
Let $\Sigma=\{0,1\}$. Then, $\Sigma^{+}=\{0,1\} \cup\{00,01,10,11\} \cup \cdots$. That is, Σ^{+}is the set of all binary numbers.

Example (Decimal Numbers)

Let $\Sigma=\{0,1,2,3,4,5,6,7,8,9\}$. Then, Σ^{+}is the set of all base-10 numbers (e.g., decimal numbers).

But What Does It MEAN?

Unfortunately, these are just "strings" and don't actually mean anything. To fix this, we'll define what we call a valuation function for each numerical system to explain how to interpret the strings of symbols.

Let $\Sigma=\{\Delta\}$. Define our valuation function, $V: \Sigma^{+} \rightarrow \mathbb{N} \backslash\{0\}$, such that:
$\square(\triangle)=1$
$\square(\triangle X)=1+V(X)$ for all $X \in \Sigma^{+}$

Existence (surjectivity of V)
We show that if $x \in \mathbb{N} \backslash\{0\}$, then there exists a string, $X \in \Sigma^{+}$such that $V(X)=x$ by induction.

- Base Case. \triangle satisfies the claim.

■ Induction Hypothesis. Suppose there exists an $X \in \Sigma^{+}$s.t. $V(X)=x$ for some $x \in \mathbb{N} \backslash\{0\}$.

- Induction Step. Consider $\triangle X$. Note that $V(\triangle X)=1+V(X)=1+x$ by definition of V and the IH . Thus, ΔX satisfies the claim for $x+1$ as addition is commutative.

Let $\Sigma=\{\triangle\}$. Define our valuation function, $V: \Sigma^{+} \rightarrow \mathbb{N} \backslash\{0\}$, such that:
$-V(\triangle)=1$

- $V(\Delta X)=1+V(X)$ for all $X \in \Sigma^{+}$

Uniqueness (injectivity of V)

Lemma. We show that V is strictly increasing based on the length of the input. That is, for all $k \in \mathbb{N} \backslash\{0\}$, if $k<\ell$, then $V\left(\Delta^{k}\right)<V\left(\Delta^{\ell}\right)$.
We go by strong induction.

- Base Case $(\ell=1)$. Vacuously, this claim holds since there are no $k<1$.
- Induction Hypothesis: Suppose for some $\ell \in \mathbb{N} \backslash\{0\}$, for all $k \in \mathbb{N} \backslash\{0\}$, if $k<\ell$, then $V\left(\Delta^{k}\right)<V\left(\Delta^{\ell}\right)$.
- Induction Step. Let $k \in \mathbb{N} \backslash\{0\}$ where $k<\ell+1$. Then, $V\left(\Delta^{\ell+1}\right)=1+V\left(\Delta^{\ell}\right) \geq 1+V\left(\Delta^{k}\right)>V\left(\Delta^{k}\right)$.
Proof. We show that if $V(X)=V(Y)$, then $X=Y$ by contrapositive. Suppose $X \neq Y$. Then, $X=\Delta^{k}$ and $Y=\Delta^{\ell}$ for some $k, \ell \in \mathbb{N} \backslash\{0\}$ where $k \neq \ell$. Without loss of generality, assume $k<\ell$. Then, by the lemma $V(k)<V(\ell)$ which means they are not equal.

Let $\Sigma=\{0,1\}$. Define our valuation function, $V: \Sigma^{+} \rightarrow \mathbb{N}$, such that:

- $V(b)=b$ for all $b \in \Sigma$
- $V(X b)=2 V(X)+b$ for all $X \in \Sigma^{+}$, for $b \in \Sigma$

Find and prove a summation form for V

We claim a summation form for V is $V\left(b_{n-1} b_{n-2} \cdots b_{0}\right)=\sum_{k=0}^{n-1} b_{k} 2^{k}$.
We go by induction on the length of the string.

- Base Case $(k=1)$. By definition of $V, V(b)=b=b \times 1=b \times 2^{0}$
- Induction Hypothesis. Suppose the closed form holds for all inputs of length k for some $k \in \mathbb{N} \backslash\{0\}$.
- Induction Step. Suppose $b_{k} b_{k-1} \ldots b_{0}$ is some string of length $k+1$. Then, $V\left(b_{k} b_{k-1} \ldots b_{0}\right)=2 V\left(b_{k} \ldots b_{1}\right)+b_{0}=2 \sum_{i=1}^{k} b_{i} 2^{i-1}+b_{0}=\sum_{i=0}^{k} b_{i} 2^{i}$. Thus the claim is true for all strings by induction.

The assembly instructions our computers use only work on a fixed number of bits. That is, basic operations act on vectors of $\{0,1\}^{w}$ for some fixed width w.

Let's look at addition. To make our machine work, we need add to output a vector of w bits, like so:

$$
\text { add: }\{0,1\}^{w} \times\{0,1\}^{w} \rightarrow\{0,1\}^{w}
$$

As above, we have $V\left(b_{w-1} b_{w-2} \cdots b_{0}\right)=\sum_{k=0}^{w-1} b_{k} 2^{k}$.

Unfortunately, this formula can "overflow" and need $w+1$ bits to be represented. To fix this, we can define add as:

$$
\operatorname{add}(a, b)=[V(a)+V(b)] \bmod 2^{w}
$$

Notably, V always outputs a non-negative number which is a problem because we'd like to be able to represent negative numbers in binary. To fix this, we define an alternate valuation function as follows:

$$
S\left(b_{w-1} b_{w-2} \cdots b_{0}\right)=-b_{w-1} 2^{w-1}+\sum_{k=0}^{w-2} b_{k} 2^{k}
$$

Note that the co-domain of S is $\left[-2^{w-1}, 2^{w-1}-1\right]$ make it not symmetric.
Interestingly, our previous definition of add still works perfectly for this system.

We call this representation Two's Complement, and it's how your computer represents signed numbers internally.

Connection to CS 24
You'll see Two's Complement come up repeatedly in CS 24 where we actually work with memory at the bit level.

