
Adam Blank Spring 2023Lecture 1

CS
13

Mathematical Foundations of
Computing



CS 13: Mathematical Foundations of Computing

Number Representation



Symbols and Strings 1

Definition (Symbols and Strings)
Let Σ be a set of symbols.
Let Σ

+ = Σ∪Σ
2∪Σ

3∪⋯.
Σ is called an alphabet; x ∈ Σ is a symbol, and s ∈ Σ

+ is a string (note
that we’re omitting the “empty string” in our definition here).

Example (Binary Numbers)
Let Σ = {0,1}. Then, Σ

+ = {0,1}∪{00,01,10,11}∪⋯. That is, Σ
+ is the

set of all binary numbers.

Connection to CS 21
You’ll see the ideas of grammars, decision problems, and regular
expressions which are all fundamentally based on this definition of
strings.



Numerical Systems 2

Example (Unary Numbers)
Let Σ = {△}. Then, Σ

+ = {△}∪{△△}∪⋯. That is, Σ
+ is the set of all

numbers represented with a single symbol (i.e., unary numbers).

Example (Binary Numbers)
Let Σ = {0,1}. Then, Σ

+ = {0,1}∪{00,01,10,11}∪⋯. That is, Σ
+ is the

set of all binary numbers.

Example (Decimal Numbers)
Let Σ = {0,1,2,3,4,5,6,7,8,9}. Then, Σ

+ is the set of all base-10
numbers (e.g., decimal numbers).

But What Does It MEAN?
Unfortunately, these are just “strings” and don’t actually mean
anything. To fix this, we’ll define what we call a valuation function for
each numerical system to explain how to interpret the strings of symbols.



Unary Numbers 3

Let Σ = {△}. Define our valuation function, V ∶ Σ+→N∖{0}, such that:
V(△) = 1
V(△X) = 1+V(X) for all X ∈ Σ

+

Existence (surjectivity of V )
We show that if x ∈N∖{0}, then there exists a string, X ∈ Σ

+ such that
V(X) = x by induction.

Base Case. △ satisfies the claim.
Induction Hypothesis. Suppose there exists an X ∈ Σ

+ s.t.
V(X) = x for some x ∈N∖{0}.
Induction Step. Consider △X . Note that V(△X) = 1+V(X) = 1+x
by definition of V and the IH. Thus, △X satisfies the claim for x+1
as addition is commutative.



Unary Numbers 4

Let Σ = {△}. Define our valuation function, V ∶ Σ+→N∖{0}, such that:
V(△) = 1
V(△X) = 1+V(X) for all X ∈ Σ

+

Uniqueness (injectivity of V )
Lemma. We show that V is strictly increasing based on the length of the
input. That is, for all k ∈N∖{0}, if k < `, then V(△k) <V(△`).
We go by strong induction.

Base Case (` = 1). Vacuously, this claim holds since there are no
k < 1.
Induction Hypothesis: Suppose for some ` ∈N∖{0}, for all
k ∈N∖{0}, if k < `, then V(△k) <V(△`).
Induction Step. Let k ∈N∖{0} where k < `+1. Then,
V(△`+1) = 1+V(△`) ≥ 1+V(△k) >V(△k).

Proof. We show that if V(X) =V(Y), then X =Y by contrapositive.
Suppose X ≠Y . Then, X =△k and Y =△` for some k,` ∈N∖{0} where
k ≠ `. Without loss of generality, assume k < `. Then, by the lemma
V(k) <V(`) which means they are not equal.



Unsigned Binary Numbers 5

Let Σ = {0,1}. Define our valuation function, V ∶ Σ+→N, such that:
V(b) = b for all b ∈ Σ

V(Xb) = 2V(X)+b for all X ∈ Σ
+, for b ∈ Σ

Find and prove a summation form for V

We claim a summation form for V is V(bn−1bn−2⋯b0) =
n−1

∑
k=0

bk2k.

We go by induction on the length of the string.
Base Case (k = 1). By definition of V , V(b) = b = b×1 = b×20

Induction Hypothesis. Suppose the closed form holds for all inputs
of length k for some k ∈N∖{0}.
Induction Step. Suppose bkbk−1 . . .b0 is some string of length k+1.

Then, V(bkbk−1 . . .b0) = 2V(bk . . .b1)+b0 =
by IH

2
k

∑
i=1

bi2i−1+b0 =
k

∑
i=0

bi2i.

Thus the claim is true for all strings by induction.



Fixed-Width Binary Numbers 6

The assembly instructions our computers use only work on a fixed
number of bits. That is, basic operations act on vectors of {0,1}w for
some fixed width w.

Let’s look at addition. To make our machine work, we need add to
output a vector of w bits, like so:

add ∶ {0,1}w×{0,1}w→ {0,1}w

As above, we have V(bw−1bw−2⋯b0) =
w−1

∑
k=0

bk2k.

Unfortunately, this formula can “overflow” and need w+1 bits to be
represented. To fix this, we can define add as:

add(a,b) = [V(a)+V(b)] mod 2w



Fixed-Width Signed Binary Numbers 7

Notably, V always outputs a non-negative number which is a problem
because we’d like to be able to represent negative numbers in binary. To
fix this, we define an alternate valuation function as follows:

S(bw−1bw−2⋯b0) = −bw−12w−1+
w−2

∑
k=0

bk2k

Note that the co-domain of S is [−2w−1,2w−1−1] make it not symmetric.

Interestingly, our previous definition of add still works perfectly for this
system.

We call this representation Two’s Complement, and it’s how your
computer represents signed numbers internally.

Connection to CS 24
You’ll see Two’s Complement come up repeatedly in CS 24 where we
actually work with memory at the bit level.


