Lecture 1

Mathematical Foundations of Computing

CS 13: Mathematical Foundations of Computing

Number Representation

Symbols and Strings

Definition (Symbols and Strings)

- Let Σ be a set of symbols.
- Let $\Sigma^+ = \Sigma \cup \Sigma^2 \cup \Sigma^3 \cup \cdots$.

 Σ is called an **alphabet**; $x \in \Sigma$ is a **symbol**, and $s \in \Sigma^+$ is a **string** (note that we're omitting the "empty string" in our definition here).

Example (Binary Numbers)

Let $\Sigma = \{0,1\}$. Then, $\Sigma^+ = \{0,1\} \cup \{00,01,10,11\} \cup \cdots$. That is, Σ^+ is the set of all binary numbers.

Connection to CS 21

You'll see the ideas of grammars, decision problems, and regular expressions which are all fundamentally based on this definition of strings.

Example (Unary Numbers)

Let $\Sigma = \{ \triangle \}$. Then, $\Sigma^+ = \{ \triangle \} \cup \{ \triangle \triangle \} \cup \cdots$. That is, Σ^+ is the set of all numbers represented with a single symbol (i.e., **unary** numbers).

Example (Binary Numbers)

Let $\Sigma = \{0,1\}$. Then, $\Sigma^+ = \{0,1\} \cup \{00,01,10,11\} \cup \cdots$. That is, Σ^+ is the set of all binary numbers.

Example (Decimal Numbers)

Let $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Then, Σ^+ is the set of all base-10 numbers (e.g., **decimal** numbers).

But What Does It MEAN?

Unfortunately, these are just "strings" and don't **actually mean anything**. To fix this, we'll define what we call a **valuation** function for each numerical system to explain how to **interpret** the strings of symbols.

Unary Numbers

Let $\Sigma = \{ \triangle \}$. Define our valuation function, $V : \Sigma^+ \to \mathbb{N} \setminus \{0\}$, such that: $V(\triangle) = 1$ $V(\triangle X) = 1 + V(X)$ for all $X \in \Sigma^+$

Existence (surjectivity of V)

We show that if $x \in \mathbb{N} \setminus \{0\}$, then there exists a string, $X \in \Sigma^+$ such that V(X) = x by induction.

- Base Case. △ satisfies the claim.
- Induction Hypothesis. Suppose there exists an $X \in \Sigma^+$ s.t. V(X) = x for some $x \in \mathbb{N} \setminus \{0\}$.
- Induction Step. Consider $\triangle X$. Note that $V(\triangle X) = 1 + V(X) = 1 + x$ by definition of V and the IH. Thus, $\triangle X$ satisfies the claim for x+1 as addition is commutative.

Unary Numbers

Let $\Sigma = \{ \triangle \}$. Define our valuation function, $V : \Sigma^+ \to \mathbb{N} \setminus \{0\}$, such that: $V(\triangle) = 1$ $V(\triangle X) = 1 + V(X)$ for all $X \in \Sigma^+$

Uniqueness (injectivity of V)

Lemma. We show that V is strictly increasing based on the length of the input. That is, for all $k \in \mathbb{N} \setminus \{0\}$, if $k < \ell$, then $V(\triangle^k) < V(\triangle^\ell)$. We go by strong induction.

- Base Case ($\ell = 1$). Vacuously, this claim holds since there are no k < 1.
- Induction Hypothesis: Suppose for some $\ell \in \mathbb{N} \setminus \{0\}$, for all $k \in \mathbb{N} \setminus \{0\}$, if $k < \ell$, then $V(\Delta^k) < V(\Delta^\ell)$.
- Induction Step. Let $k \in \mathbb{N} \setminus \{0\}$ where $k < \ell + 1$. Then, $V(\Delta^{\ell+1}) = 1 + V(\Delta^{\ell}) \ge 1 + V(\Delta^k) > V(\Delta^k)$.

Proof. We show that if V(X) = V(Y), then X = Y by contrapositive. Suppose $X \neq Y$. Then, $X = \triangle^k$ and $Y = \triangle^\ell$ for some $k, \ell \in \mathbb{N} \setminus \{0\}$ where $k \neq \ell$. Without loss of generality, assume $k < \ell$. Then, by the lemma $V(k) < V(\ell)$ which means they are not equal.

Unsigned Binary Numbers

Let $\Sigma = \{0,1\}$. Define our valuation function, $V : \Sigma^+ \to \mathbb{N}$, such that: V(b) = b for all $b \in \Sigma$ V(Xb) = 2V(X) + b for all $X \in \Sigma^+$, for $b \in \Sigma$

Find and prove a summation form for V

We claim a summation form for V is $V(b_{n-1}b_{n-2}\cdots b_0) = \sum_{k=0}^{n-1} b_k 2^k$.

We go by induction on the length of the string.

- Base Case (k = 1). By definition of V, $V(b) = b = b \times 1 = b \times 2^0$
- Induction Hypothesis. Suppose the closed form holds for all inputs of length k for some k ∈ N \ {0}.
- Induction Step. Suppose $b_k b_{k-1} \dots b_0$ is some string of length k+1.

Then,
$$V(b_k b_{k-1} \dots b_0) = 2V(b_k \dots b_1) + b_0 = \sum_{i=1}^{\kappa} b_i 2^{i-1} + b_0 = \sum_{i=0}^{\kappa} b_i 2^i$$
.

Thus the claim is true for all strings by induction.

Fixed-Width Binary Numbers

The assembly instructions our computers use only work on a fixed number of bits. That is, basic operations act on vectors of $\{0,1\}^w$ for some fixed width w.

Let's look at addition. To make our machine work, we need add to output a vector of w bits, like so:

add: $\{0,1\}^w \times \{0,1\}^w \to \{0,1\}^w$

As above, we have
$$V(b_{w-1}b_{w-2}\cdots b_0) = \sum_{k=0}^{w-1} b_k 2^k$$
.

Unfortunately, this formula can "overflow" and need w+1 bits to be represented. To fix this, we can define add as:

$$\operatorname{add}(a,b) = [V(a) + V(b)] \mod 2^w$$

Fixed-Width Signed Binary Numbers

Notably, V always outputs a **non-negative** number which is a problem because we'd like to be able to represent negative numbers in binary. To fix this, we define an alternate valuation function as follows:

$$S(b_{w-1}b_{w-2}\cdots b_0) = -b_{w-1}2^{w-1} + \sum_{k=0}^{w-2} b_k 2^k$$

Note that the co-domain of S is $[-2^{w-1}, 2^{w-1}-1]$ make it **not symmetric**.

Interestingly, our previous definition of add still works perfectly for this system.

We call this representation **Two's Complement**, and it's how your computer represents signed numbers internally.

Connection to CS 24

You'll see Two's Complement come up repeatedly in CS 24 where we actually work with memory at the bit level.