CS 13: Mathematical Foundations of Computing

Lecture 0 Exercises Solutions

Sets

Definition

The *power set* of a set X, denoted $\mathcal{P}(X)$, is defined as $\mathcal{P}(X) = \{Y \mid Y \subseteq X\}$.

Consider the following examples:

- $\mathcal{P}(\varnothing) = \{\varnothing\}$
- $\mathcal{P}(\{a,b\}) = \{\varnothing, \{a\}, \{b\}, \{a,b\}\}$

Claim

Prove that for all sets X and Y, $\mathcal{P}(X) \cup \mathcal{P}(Y) \cup \mathcal{P}(X \cap Y) \subseteq \mathcal{P}(X \cup Y)$.

Solution:

We show that for all sets X, Y. $\mathcal{P}(X) \cup \mathcal{P}(Y) \cup \mathcal{P}(X \cap Y) \subseteq \mathcal{P}(X \cup Y)$. Let $e \in \mathcal{P}(X) \cup \mathcal{P}(Y) \cup \mathcal{P}(X \cap Y)$. By the definition of union, it must be the case that $e \in \mathcal{P}(X)$ or $e \in \mathcal{P}(Y)$ or $e \in \mathcal{P}(X \cap Y)$. Each of these sets, $X, Y, X \cap Y$ is a subset of $X \cup Y$, so since e must be a subset of one of these sets, $e \subseteq X \cup Y$, so $e \in \mathcal{P}(X \cup Y)$.

Functions

Definition

A function $f : A \to B$ is *strictly monotone* iff it is either strictly increasing (for all $x, y \in A, x > y \implies f(x) > f(y)$) or it is strictly decreasing (for all $x, y \in A, x > y \implies f(x) < f(y)$).

Definition

A function $f : A \to B$ is *injective* iff for all $x, y \in A$, if f(x) = f(y), then x = y.

Claim

Prove that if $f: A \rightarrow B$ is strictly monotone, then it is injective.

Solution:

We go by contrapositive. Let $x, y \in A$. Suppose $x \neq y$. Then, without loss of generality, let x > y. If f is strictly increasing, f(x) > f(y); if f is strictly decreasing, f(x) < f(y). In either case, $f(x) \neq f(y)$, as required.

Induction

Claim

For all $n \in \mathbb{N}$ and $x \in \mathbb{R}$ where x > -1, $(1 + x)^n \ge 1 + nx$

Solution:

Let x > -1 be a real number. We go by induction to prove $(1 + x)^n \ge 1 + nx$ for all $n \in \mathbb{N}$.

Base Case. $(1+x)^0 = 1$ and 1+0x = 1, so $(1+x)^0 \ge 1+0x$.

Induction Hypothesis. Suppose that the claim holds for n = k for some $k \in \mathbb{N}$.

Induction Step. We show the claim for n = k + 1.

$(1+x)^{k+1} = (1+x)(1+x)^k$	[Factor out a $(1+x)$]
$\ge (1+x)(1+kx)$	[Induction Hypothesis, and since $(1+x) \ge 0$]
$= 1 + kx + x + kx^2$	[Distribute]
$\geq 1 + kx + x$	$[kx^2 \ge 0 \text{ since } k \ge 0 \text{ and } x^2 \ge 0]$
= 1 + (k+1)x	[Factor]

So, the claim is true by induction.