CS 13: Mathematical Foundations of Computing

Lecture 0 Exercises Solutions

Sets

Definition

The power set of a set X, denoted $\mathcal{P}(X)$, is defined as $\mathcal{P}(X)=\{Y \mid Y \subseteq X\}$.
Consider the following examples:

- $\mathcal{P}(\varnothing)=\{\varnothing\}$
- $\mathcal{P}(\{a, b\})=\{\varnothing,\{a\},\{b\},\{a, b\}\}$

Claim
Prove that for all sets X and $Y, \mathcal{P}(X) \cup \mathcal{P}(Y) \cup \mathcal{P}(X \cap Y) \subseteq \mathcal{P}(X \cup Y)$.

Solution:

We show that for all sets $X, Y . \mathcal{P}(X) \cup \mathcal{P}(Y) \cup \mathcal{P}(X \cap Y) \subseteq \mathcal{P}(X \cup Y)$. Let $e \in \mathcal{P}(X) \cup \mathcal{P}(Y) \cup \mathcal{P}(X \cap Y)$. By the definition of union, it must be the case that $e \in \mathcal{P}(X)$ or $e \in \mathcal{P}(Y)$ or $e \in \mathcal{P}(X \cap Y)$. Each of these sets, $X, Y, X \cap Y$ is a subset of $X \cup Y$, so since e must be a subset of one of these sets, $e \subseteq X \cup Y$, so $e \in \mathcal{P}(X \cup Y)$.

Functions

Definition
A function $f: A \rightarrow B$ is strictly monotone iff it is either strictly increasing (for all $x, y \in A, x>y \Longrightarrow$
$f(x)>f(y)$) or it is strictly decreasing (for all $x, y \in A, x>y \Longrightarrow f(x)<f(y)$).

| Definition |
| :--- | :--- |
| A function $f: A \rightarrow B$ is injective iff for all $x, y \in A$, if $f(x)=f(y)$, then $x=y$. |

Claim

Prove that if $f: A \rightarrow B$ is strictly monotone, then it is injective.

Solution:

We go by contrapositive. Let $x, y \in A$. Suppose $x \neq y$. Then, without loss of generality, let $x>y$. If f is strictly increasing, $f(x)>f(y)$; if f is strictly decreasing, $f(x)<f(y)$. In either case, $f(x) \neq f(y)$, as required.

Induction

Claim
For all $n \in \mathbb{N}$ and $x \in \mathbb{R}$ where $x>-1,(1+x)^{n} \geq 1+n x$

Solution:

Let $x>-1$ be a real number. We go by induction to prove $(1+x)^{n} \geq 1+n x$ for all $n \in \mathbb{N}$.
Base Case. $(1+x)^{0}=1$ and $1+0 x=1$, so $(1+x)^{0} \geq 1+0 x$.
Induction Hypothesis. Suppose that the claim holds for $n=k$ for some $k \in \mathbb{N}$.
Induction Step. We show the claim for $n=k+1$.

$$
\begin{aligned}
(1+x)^{k+1} & =(1+x)(1+x)^{k} & & {[\text { Factor out a }(1+x)] } \\
& \geq(1+x)(1+k x) & & {[\text { Induction Hypothesis, and since }(1+x) \geq 0] } \\
& =1+k x+x+k x^{2} & & {[\text { Distribute }] } \\
& \geq 1+k x+x & & {\left[k x^{2} \geq 0 \text { since } k \geq 0 \text { and } x^{2} \geq 0\right] } \\
& =1+(k+1) x & & {[\text { Factor }] }
\end{aligned}
$$

So, the claim is true by induction.

