CS 13: Mathematics for Computer Scientists

Definitions and Theorems

What Is This?

This is a complete ${ }^{1}$ listing of definitions and theorems relevant to CS 13. The goal of this document is less as a reference and more as a way of indicating what is and is not allowed to be assumed in proofs.

Contents

1 Arithmetic 3
1.1 Definitions . 3

2 Equality 3
2.1 Definitions . 3
2.2 Theorems . 3

3 Inequalities 6
3.1 Definitions . 6
3.2 Theorems . 6

4 Absolute Value 7
4.1 Definitions . 7
4.2 Theorems . 7

5 Parity 7
5.1 Definitions . 8
5.2 Theorems . 8

6 Rationals 9
6.1 Definitions . 9
6.2 Theorems . 9

7 Sets 9
7.1 Definitions . 9
7.2 Theorems . 11

8 Modular Arithmetic 11
8.1 Definitions . 11
8.2 Theorems . 11

9 Functions 12
9.1 Definitions . 12

10 Primes 13
10.1 Definitions . 13
10.2 Theorems . 13

[^0]11 GCD 14
11.1 Definitions 14
11.2 Theorems 14
12 Summations 14
12.1 Closed Forms 14
12.2 Theorems 15

1 Arithmetic

This section is all about arithmetic. You'll find that you can basically assume anything about arithmetic that you learned in high school algebra or earlier.

1.1 Definitions

Arithmetic Expression of Real Numbers
Definition
An arithmetic expression of real numbers is an expression made up of real numbers, variables representing real numbers, addition, multiplication, subtraction, division, exponentiation, and logarithms.

Zero
Zero (0, the additive identity $)$ is the constant real number such that for any arithmetic expression X,
$0+X=X=X+0$.

One
One (1, the multiplicative identity) is the constant real number such that for any arithmetic expression X,
$1 \cdot X=X=X \cdot 1$.

2 Equality

This section is all about equalities. You'll find that you can basically assume anything about arithmetic that you learned in high school algebra or earlier.

2.1 Definitions

Equality for Real Numbers
If X and Y are two real numbers, then $X=Y$ (" X equals $\left.Y^{\prime \prime}\right)$ when both expressions "evaluate" to the
same real number.
(This means you should use what you learned in high school about these types of expressions.)

Inequality for Real Numbers	DEFINITION
If X and Y are two real numbers, then $X \neq Y$ (" X does not equal Y ") when $\neg(X=Y)$.	

2.2 Theorems

Reflexivity of Equality for Real Numbers	THEOREM
If x is a real number, then $x=x$.	

Symmetry of Equality for Real Numbers	THEOREM
If x, y are real numbers, then $x=y \Longleftrightarrow y=x$.	

Transitivity of Equality for Real Numbers	THEOREM
If x, y, and z are real numbers, then $(x=y \wedge y=z) \Longrightarrow x=z$.	

If x is a real number, then:

- $x+0=x=0+x$
- $x \cdot 1=x=1 \cdot x$
- $x^{0}=1$ (unless x evaluates to 0 , in which case x^{0} is undefined)
- $0^{x}=0$ (unless x evaluates to 0 , in which case 0^{x} is undefined)
- $1^{x}=1$
- $x / 1=x$

Domination for Real Numbers	THEOREM
If x is a real number, then:	
- $x \cdot 0=0=0 \cdot x$	
- $x \cdot 1=x=1 \cdot x$	

Inverse Operations for Real Numbers

If a and b are real numbers, then:

- $a-b=a+(-b)$
- $a \cdot \frac{b}{a}=b$

Inverses for Real Numbers

If x and b are real numbers, then:

- $x+(-x)=0=(-x)+x$
- $x \cdot \frac{1}{x}=1=\frac{1}{x} \cdot x$ (unless x evaluates to 0$)$
- $b^{\log _{b}(x)}=x$
- $\log _{b}\left(b^{x}\right)=x$
- $-(-x)=x$

Associativity of Arithmetic Expressions	THEOREM

If x, y, and z are real numbers, then:

- $(x+y)+z=x+(y+z)$
- $(x y) z=x(y z)$

As a consequence, we can omit the parentheses in these expressions.

Commutativity of Arithmetic Expressions

If x and y are real numbers, then:

- $x+y=y+x$
- $x y=y x$

If a, b, c, and d are real numbers, then:

- $a(b+c)=a b+a c$
- $(a+b)(c+d)=a c+a d+b c+b d$

Algebraic Properties of Real Numbers

If a, b, c, and d are real numbers, then:

- $\frac{\frac{a}{c}}{\frac{c}{d}}=\frac{a d}{b c}$
- $\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}$
- $\left(a^{b}\right)\left(a^{c}\right)=a^{b+c}$
- $\left(a^{b}\right)^{c}=a^{b c}$
- $\log _{c}(a b)=\log _{c}(a)+\log _{c}(b)$
- $\log _{c}\left(\frac{a}{b}\right)=\log _{c}(a)-\log _{c}(b)$

Adding Equalities	THEOREM
If a and b are real numbers, $a=b$, and $c=d$, then $a+c=b+d$.	

Multiplying Equalities	THEOREM
If a and b are real numbers, $a=b$, and $c=d$, then $a c=b d$.	

Dividing Equalities	THEOREM
If a and b are real numbers, $a=b$, and $c \neq 0$, then $\frac{a}{c}=\frac{b}{c}$	

Subtracting Equalities	THEOREM
If a and b are real numbers, $a=b$, and $c=d$, then $a-c=b-d$.	

Raising Equalities To A Power	THEOREM
If a and b are real numbers and $a=b$, then $a^{c}=b^{c}$.	

Log Change-Of-Base Formula	THEOREM
If x, a, and b are real numbers, $x, a, b>0, a \neq 1, b \neq 1$, then $\log _{a}(x)=\frac{\log _{b}(x)}{\log _{b}(a)}$	

Powers of -1	THEOREM
For any $n \in \mathbb{N},(-1)^{2 n}=1$ and $(-1)^{2 n+1}=-1$.	

3 Inequalities

This section is all about inequalities. You'll find that you can basically assume anything about arithmetic that you learned in high school algebra or earlier.

3.1 Definitions

Less-Than for Real Numbers
If x and y are two real numbers, then $x<y$ (" x is less than y ") when x "evaluates" to a smaller real
number than y evaluates to.
(This means, use what you learned in high school about these types of expressions.)

Greater-Than for Real Numbers
If x and y are two real numbers, then $x>y$ (" x is greater than y ") when $y<x$.

Less-Than-Or-Equal-To for Real Numbers	Definition
If x and y are two real numbers, then $x \leq y$ (" x is less than or equal to y ") when $\neg(x>y)$.	

Greater-Than-Or-Equal-To for Real Numbers Definition

If x and y are two real numbers, then $x \geq y$ (" x is greater than or equal to y ") when $\neg(x<y)$.

3.2 Theorems

Trichotomy for Real Numbers	THEOREM
If x and y are two real numbers, then $x=y \vee x<y \vee x>y$.	

Antisymmetry of Inequality for Real Numbers	THEOREM
If x, y are real numbers, then $(x \leq y \wedge y \leq x) \Longrightarrow x=y$.	

Transitivity of Inequality for Real Numbers	THEOREM
If x, y, and z are real numbers, then $(x<y \wedge y<z) \Longrightarrow x<z$.	

Adding Inequalities	THEOREM
If a and b are real numbers, $a<b$ and $c<d$, then $a+c<b+d$.	

Subtracting Inequalities	THEOREM
If a and b are real numbers and $a<b$ and $c>d$, then $a-c<b-d$.	

Multiplying (Positive) Inequalities	THEOREM
If a and b are real numbers, $0<a<b$ and $0<c<d$, then $0<a c<b d$.	

Multiplying (Negative) Inequalities	THEOREM
If a and b are real numbers, $a<0$, and $b<0$, then $a b>0$.	

If a and b are real numbers and $0<a<b$, then $\frac{1}{a}>\frac{1}{b}>0$.

Same Sign
If a and b are real numbers and $a b>0$, then a and b are both positive or a and b are both negative.

Squares Are Positive	THEOREM
If a is a real number, then $a^{2} \geq 0$.	

4 Absolute Value

This section is all about absolute values. In general, we don't care much about absolute values, but they're something easy to prove things about. So, we list out a bunch of theorems you may use here.

4.1 Definitions

| Absolute Value Definition |
| :--- | :--- |

If x is a real number, then

$$
|X|= \begin{cases}X & \text { if } X \geq 0 \\ -X & \text { if } X<0\end{cases}
$$

4.2 Theorems

Absolute Value Magnitude	THEOREM
If x and M are real numbers and $M \geq 0$, then $\|x\| \leq M \Longleftrightarrow-M \leq x \leq M$.	

Positive Definite	THEOREM
If x is a real number, then $\|x\| \geq 0$ and $\|x\|=0 \Longleftrightarrow x=0$.	

Multiplying Absolute Values	THEOREM
If x and y are real numbers, then $\|x y\|=\|x\|\|y\|$	

Triangle Inequality	THEOREM
If x and y are real numbers, then $\|x+y\| \leq\|x\|+\|y\|$.	

5 Parity

This section is all about parity (even-ness/odd-ness) of integers. Unlike all the previous sections, we will use this as a starting point for discussing proofs. This means that you may only assume what is written here explicitly and nothing more.

5.1 Definitions

Even	Definition
An integer n is even iff $\exists k(n=2 k)$	

Odd	DEFINITION
An integer n is odd iff $\exists k(n=2 k+1)$	

Perfect Square	Definition
An integer n is a perfect square iff there exists an integer x for which $n=x^{2}$.	

Closure Under \star

A set S is closed under a binary operation \star iff $x \star x$ is an element of S.

5.2 Theorems

\mathbb{Z} is closed under +	THEOREM
The integers are closed under addition.	

\mathbb{Z} is closed under x	THEOREM
The integers are closed under multiplication.	

The square of every even integer is even	THEOREM
If n is even, then n^{2} is even.	

The square of every odd number is odd	THEOREM
If n is odd, then n^{2} is odd.	

The sum of two odd numbers is even	ThEOREM
If n and m are odd, then $n+m$ is even.	

No even number is the largest even number

\mathbb{Z} is closed under -	THEOREM
The integers are closed under subtraction.	

\mathbb{Z} is not closed under /	ThEOREM
The integers are not closed under division.	

No Integer is Odd and Even	ThEOREM
If n is an integer, n is not both odd and even.	

6 Rationals

This section is all about rational numbers. We also use proofs about rational numbers as a starting point for discussing proofs. This means that you may only assume what is written here explicitly and nothing more.

6.1 Definitions

Rational	Definition
An real number x is rational iff there are two integers p and $q \neq 0$ such that $x=\frac{p}{q}$.	

6.2 Theorems

\mathbb{Q} is closed under +	Theorem
The rationals are closed under addition (and subtraction)	

\mathbb{Q} is closed under \times	THEOREM
The rationals are closed under multiplication	

$\mathbb{R} \backslash \mathbb{Q}$ is not closed under +	Theorem
The irrationals are not closed under addition.	

7 Sets

7.1 Definitions

The Set of Natural Numbers	Definition
$\mathbb{N}=\{0,1,2, \ldots\}$ is the set of Natural Numbers	

The Set of Integers	Definition
$\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$ is the set of Integers.	

The Set of Rationals
$\mathbb{Q}=\left\{\frac{p}{q}: p, q \in \mathbb{Z} \wedge q \neq 0\right\}$ is the set of Rational Numbers.

The Set of Reals	Definition
\mathbb{R} is the set of Real Numbers.	

If A and B are sets, then $x \in A$ (" x is an element of A ") means that x is an element of A, and $x \notin A$ (" x is not an element of $A^{\prime \prime}$) means that x is not an element of A.

Set Equality

Definition
If A and B are sets, then $A=B$ iff $\forall x(x \in A \Longleftrightarrow x \in B)$.

Subset and Superset
If A and B are sets, then $A \subseteq B(" A$ is a subset of B ") means that all the elements of A are also in B,
and $A \supseteq B$ (" A is a superset of B ") means that all the elements of B are also in A.

Set Comprehension

Definition
If $P(x)$ is a predicate, then $\{x: P(x)\}$ is the set of all elements for which $P(x)$ is true. Also, if S is a set, then $\{x \in S: P(x)\}$ is the subset of all elements of S for which $P(x)$ is true.

Set Union	Definition
If A and B are sets, then $A \cup B$ is the union of A and $B . A \cup B=\{x: x \in A \vee x \in B\}$.	

Set Intersection

If A and B are sets, then $A \cap B$ is the intersection of A and $B . A \cap B=\{x: x \in A \wedge x \in B\}$.

Set Difference
If A and B are sets, then $A \backslash B$ is the difference of A and $B . A \backslash B=\{x: x \in A \wedge x \notin B\}$.

Set Symmetric Difference
If A and B are sets, then $A \oplus B$ is the symmetric difference of A and $B . A \oplus B=\{x: x \in A \oplus x \in B\}$.

Set Complement
 Definition

If A is a set, then \bar{A} is the complement of A. If we restrict ourselves to a "universal set", \mathcal{U} (a set of all possible things we're discussing), then $\bar{A}=\{x \in \mathcal{U}: x \notin A\}$.

Brackets n
If $n \in \mathbb{N}$, then $[n]$ ("brackets n ") is the set of natural numbers from 1 to $n .[n]=\{x \in \mathbb{N}: 1 \leq x \leq n\}$.

Cartesian Product Definition
If A and B are sets, then $A \times B$ is the cartesian product of A and $B . A \times B=\{(a, b): a \in A, b \in B\}$.

Powerset	Definition
If A is a set, then $\mathcal{P}(A)$ is the power set of $A . \mathcal{P}(A)=\{S: S \subseteq A\}$.	

7.2 Theorems

Subset Containment	THEOREM
If A and B are sets, then $(A=B) \Longleftrightarrow(A \subseteq B \wedge B \subseteq A)$.	

Russell's Paradox	Theorem
The set of all sets that do not contain themselves does not exist. That is, $\{x: x \notin x\}$ does not exist.	

DeMorgan's Laws for Sets	Theorem
If A and B are sets, then $\overline{A \cup B}=\bar{A} \cap \bar{B}$ and $\overline{A \cap B}=\bar{A} \cup \bar{B}$.	

Distributivity for Sets	THEOREM
If A and B are sets, then $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ and $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.	

$A \cap B \subseteq A$	Theorem
If A and B are sets, then $A \cap B \subseteq A$.	

8 Modular Arithmetic

8.1 Definitions

$a \mid b$ (" a divides b ")	Definition	
For $a, b \in \mathbb{Z}$, where $a \neq 0:$	$a \mid b$ iff $\exists(k \in \mathbb{Z}) b=k a$	

$a \equiv_{m} b(" a$ is congruent to b modulo $m)$	Definition
For $a, b \in \mathbb{Z}, m \in \mathbb{Z}^{+}:$	$a \equiv_{m} b$ iff $m \mid(a-b)$

Multiplicative group of integers mod m

Definition
The multiplicative group of integers mod m is made up of the set of integers relatively prime to m from the set $\{0,1, \ldots, m-1\}$ with multiplication performed $\bmod m$, and is denoted \mathbb{Z}_{m}.

Multiplicative inverse	Definition
The multiplicative inverse of an element $n \in \mathbb{Z}_{m}$ is the unique element $a \in \mathbb{Z}_{m}$ such that $a n \equiv 1$.	

8.2 Theorems

Division Theorem

If $a \in \mathbb{Z}$ and $d \in \mathbb{Z}^{+}$, then there exist unique $q, r \in \mathbb{Z}$, where $0 \leq r<d$ such that $a=d q+r$.
We call $q=a \operatorname{div} d$ and $r=a \bmod d$.

Relation Between Mod and Congruences	Theorem
If $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^{+}$, then $a \equiv_{m} b \Longleftrightarrow a \bmod m=b \bmod m$.	

Adding Congruences	ThEOREM
If $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^{+}$, then $\left(a \equiv_{m} b \wedge c \equiv_{m} d\right) \Longrightarrow a+c \equiv_{m} b+d$.	

Multiplying Congruences	ThEOREM
If $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^{+}$, then $\left(a \equiv_{m} b \wedge c \equiv_{m} d\right) \Longrightarrow a c \equiv_{m} b d$.	

Squares are congruent to 0 or $1 \bmod 4$	THEOREM
If $n \in \mathbb{Z}$, then $n^{2} \equiv_{4} 0$ or $n^{2} \equiv_{4} 1$.	

Additivity of \bmod	THEOREM
If $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^{+}$, then $(a+b) \bmod m=((a \bmod m)+(b \bmod m)) \bmod m$	

Multiplicativity of \bmod	ThEOREM
If $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^{+}$, then $(a b) \bmod m=((a \bmod m)(b \bmod m)) \bmod m$	

Base b Representation of Integers

Suppose n is a positive integer (in base b) with exactly m digits.
Then, $n=\sum_{i=0}^{m-1} d_{i} b^{i}$, where d_{i} is a constant representing the i-th digit of n.

Raising Congruences To A Power	THEOREM
If $a, b, i \in \mathbb{Z}$ and $m \in \mathbb{Z}^{+}$, then $a \equiv_{m} b \Longrightarrow a^{i} \equiv_{m} b^{i}$.	

9 Functions

9.1 Definitions

Function

A function $f: X \rightarrow Y$ is a mapping from each element of a set X to exactly one element of Y. The set X is called the domain of f and the set Y is called the codomain.

Injection

A function $f: X \rightarrow Y$ is called an injection iff, for all $x, y \in X, f(x)=f(y) \Longrightarrow x=y$ (i.e., f does not map distinct elements of its domain to the same element in its codomain).

A function $f: X \rightarrow Y$ is called a surjection iff for all elements $y \in Y$, there exists $x \in X$ such that $f(x)=y$ (i.e., every element in its codomain Y is mapped to by at least one element of its domain X).

Bijection

Definition
A function $f: X \rightarrow Y$ is called a bijection iff it is injective and surjective (i.e., it defines a one-to-one correspondence between elements of X and Y).

Strictly Increasing	Definition
A function $f: X \rightarrow \mathbb{R}$ defined on $X \subseteq \mathbb{R}$ is increasing iff $x<y \Longrightarrow f(x) \leq f(y)$. If this inequality is strict (i.e. $x<y \Longrightarrow f(x)<f(y))$, the function is strictly increasing.	

10 Primes

10.1 Definitions

Factor	Definition
A factor of an integer n is an integer f such that $\exists x(n=f x)$. Alternatively, f is a factor of n iff $f \mid n$.	

Prime	DEFINITION
A integer $p>1$ is prime iff the only positive factors of p are 1 and p.	

Composite
Definition
A integer $p>1$ is composite iff it's not prime. That is, an integer $p>1$ is composite iff it has a factor other than 1 and p.

Trivial Factor

Definition
A trivial factor of an integer n is 1 or n. We call it a "trivial factor", because all numbers have these factors.

Two integers, a and b, are coprime (or relatively prime) if the only positive integer that divides both of them is 1 . That is, their prime factorizations don't share any primes.

10.2 Theorems

Fundamental Theorem of Arithmetic
Theorem
Every natural number can be uniquely expressed as a product of primes raised to powers.

All Composite Numbers Have a Small Non-Trivial Factor	Theorem
If n is a composite number, then it has a non-trivial factor $f \in \mathbb{N}$ where $f \leq \sqrt{n}$.	

Euclid's Theorem	THEOREM
There are infinitely many primes.	

11 GCD

11.1 Definitions

GCD (Greatest Common Divisor)

The gcd of two integers, a and b, is the largest integer d such that $d \mid a$ and $d \mid b$.

```
Euclidean Algorithm
    Algorithm
gcd(a, b) {
    if (b == 0) {
        return a;
    }
    else {
        return gcd(b, a mod b);
    }
```


11.2 Theorems

GCD Property

For any $a, b \in \mathbb{Z}^{+}, \operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$.

12 Summations

12.1 Closed Forms

Gauss Summation
For all $n \in \mathbb{N}, \sum_{i=0}^{n} i=\frac{n(n+1)}{2}$.

Infinite Geometric Series
For $-1<x<1, \sum_{i=0}^{\infty} x^{i}=\frac{1}{1-x}$.

Finite Geometric Series
For $-1<x<1$ and $n \in \mathbb{N}, \sum_{i=0}^{n} x^{i}=\left(\frac{1}{1-x}\right)-\left(\frac{x^{n+1}}{1-x}\right)=\frac{1-x^{n+1}}{1-x}$

12.2 Theorems

Binomial Theorem
For all $x, y \in \mathbb{R}$ and $n \in \mathbb{N},(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}$.

Index

$=, 3,10$
$\in, 10$
absolute value, 7
antisymmetry, 6
cartesian product, 10
closed, 8
closure, 8
complement, 10
composite, 13
congruence, 11
coprime, 13
demorgan, 11
difference, 10
distributivity, 11
divides, 11
division theorem, 11
euclidean algorithm, 14
even, 8
factor, 13
fundamental theorem of arithmetic, 13
gcd, 14
infinitely many primes, 14
intersection, 10
$\bmod , 11$
odd, 8
one, 3
positive definite, 7
powerset, 10
prime, 13
rational, 9
relatively prime, 13
russell's paradox, 11
square, 8
subset, 10
superset, 10
symmetric difference, 10
triangle inequality, 7
trichotomy, 6
trivial factor, 13
union, 10
universe, 10
zero, 3

[^0]: ${ }^{1}$ It's not actually complete. It's probably missing a lot. If you find an error or a missing theorem, please let us know! We will give you a rubber ducky.

