
CS 13: Mathematical Foundations of Computer Science Fall 2023
Written Homework 02 (due Monday, October 30)

Directions: Write up carefully argued solutions to the following problems. Your solution should be clear
enough that it should explain to someone who does not already understand the answer why it works. You may
use results from lecture and previous homeworks without proof. Your solutions must be written in LATEX using
our homework template. No solution to a single part may be more than one page.

0. Lists without Lisp! (50 points)
Define two new programs on Lists. concat : (List, List) → List and rev : List → List:

concat([], R) = R

concat(x :: L,R) = x :: concat(L,R)

rev([]) = []

rev(x :: X) = concat(rev(X), x :: [])

In this question, you will prove that rev(concat(A,B)) = concat(rev(B), rev(A)) for all lists A and B.
(a) [15 Points] Prove that concat is symmetric across []. That is, prove that for all lists L,

concat(L, []) = concat([], L)

(b) [15 Points] Prove that for all lists A, B, C, concat is associative. That is:

concat(concat(A,B), C) = concat(A, concat(B,C))

(c) [20 Points] In this part, you will (finally!) prove that rev(concat(A,B)) = concat(rev(B), rev(A)) for all
lists A and B.
To do this, you should first let B be an arbitrary list, and then go by structural induction on A. You
should find both of the previous parts useful (and you may use them as lemmas even if you haven’t proven
them correctly.)

1. Proving BST Insertion Works! (50 points)
Consider the following definition of Tree:

Tree = Nil | Tree(Integer,Tree,Tree)

Then, the standard BST insertion function can be written as the following:

insert(v, Nil) = Tree(v, Nil, Nil)

insert(v, Tree(x, L,R))) = if v < x then Tree(x, insert(v, L), R) else Tree(x, L, insert(v,R))

(a) [25 Points]
Next, define a program less which checks if an entire tree is less than a provided integer:

less(v, Nil) = true

less(v, Tree(x, L,R)) = x < v and less(v, L) and less(v,R)

Prove that for all b ∈ Z, v ∈ Z and all trees T , if less(b, T ), and b > v, then less(b, insert(v, T )). You
may assume that all elements inserted into the tree are unique.
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In English, this means that, given a upper bound on the elements in a BST, if you insert something that
meets that upper bound, it is still a upper bound.

(b) [25 Points] Consider a similar function greater which can be used to establish an lower bound on the
elements in the tree:

greater(v, Nil) = true

greater(v, Tree(x, L,R)) = x > v and greater(v, L) and greater(v,R)

You may assume the symmetric theorem for greater that you proved in (a).
Now, consider a function that checks if a tree is a BST:

isBST(Nil) = true

isBST(Tree(x, L,R)) = less(x, L) and isBST(L) and greater(x,R) and isBST(R)

Using part (a) and the symmetric theorem for greater, prove that for all trees T and all v ∈ Z, if isBST(T ),
then isBST(insert(v, T )). That is, prove that insertion into a BST preserves the BST property!
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