CS 13: Mathematical Foundations of Computer Science

Written Homework 00 (due Monday, October 9)

0. Verifications (20 points)

See separate document. We recommend doing this question first!

1. Your Average Induction (20 points)

Consider the following code:

```
def average(grades, num_grades):
1
2
         if num_grades == 1:
3
           return grades[0]
4
        else:
5
            return (
6
               (average(grades, num_grades - 1) * (num_grades - 1)) +
               grades[num_grades - 1]
7
8
            ) / num_grades
```

Let A be an arbitrary, non-empty list[int], and let n = len(A).

Prove that
$$average(A, n) = \sum_{i=0}^{n-1} \frac{A_i}{n}$$
, where $A_i = A[i]$ for $0 \le i < n$ for all $n \ge 1$.

2. No, You're Being Irrational (20 points)

Prove that $\sqrt{2} + \sqrt{5}$ is irrational. You may use the fact that $\sqrt{2}$ is irrational, but you do not have to.

3. Prime Examples (20 points)

Prove that for any prime p > 3, either $p \equiv_6 1$ or $p \equiv_6 5$.

4. Balanced Ternary (20 points)

In the balanced ternary number system, numbers are made up of "trits": $\{0, 1, T\}$. To evaluate a trit, we use a "valuation function", called V, defined as follows:

$$V(X) = \begin{cases} 0 & \text{if } X = 0\\ 1 & \text{if } X = 1\\ -1 & \text{if } X = T \end{cases}$$

To evaluate an entire balanced ternary number, a summation is used as usual:

$$\mathsf{evaluate}_n(t_{n-1}t_{n-2}\dots t_0) = \sum_{i=0}^{n-1} V(t_i) \cdot 3^i$$

Prove that $evaluate_n(X)$ is injective for all n. That is, prove that no two (different) inputs lead to the same output.