
Adam Blank Fall 2023Lecture 6

CS
13

Mathematical Foundations of
Computer Science



CS 13: Mathematical Foundations of Computer Science

Structural Induction



Defining the List type 1

We define the type List as follows:
[] is a List.
If x ∈N and L ∈ List, then x::L is a List.

Thus, every function on Lists will have two cases:
one for the empty case, and
one for the “one more element” case.

Example

len([]) = 0
len(x::L) = 1+len(L)

Example

sum([]) = 0
sum(x::L) = x+sum(L)



Structural Induction 2

len([]) = 0
len(x::L) = 1+len(L)

sum([]) = 0
sum(x::L) = x+sum(L)

Example
Claim: For all L ∈ List, where the list does not contain 0,

sum(L) ≥ len(L)

We go by structural induction.
Case []: sum([]) = 0 = len([]).
Case x::L: Note that

sum(x::L) = x+sum(L) [By Definition of sum]
≥ x+len(L) [By IH]
≥ 1+len(L) [Since x ∈N∖{0}]
≥ len(x::L) [By Definition of len]



Structural Induction 3

sum([]) = 0
sum(x::L) = x+sum(L)

sum2(acc, []) = acc

sum2(acc, x::L) = sum2(acc+x, L)

Example
Claim: For all L ∈ List and acc ∈N,

sum(L)+acc = sum2(acc, L)

We go by structural induction.
Case []: sum([])+acc = acc = sum2(acc, []).
Case x::L: Note that

sum(x::L)+acc = x+sum(L)+acc [By Definition of sum]
= sum2(x+acc, L) [By IH]
= sum2(acc, x::L) [By Definition of sum2]



Structural Induction 4

sum([]) = 0
sum(x::L) = x+sum(L)

sum2(acc, []) = acc

sum2(acc, x::L) = sum2(acc+x, L)

Example
Claim: For all L ∈ List and acc ∈N,

sum(L)+acc = sum2(acc, L)

We go by structural induction.
Case []: sum([])+acc = acc = sum2(acc, []).
Case x::L: Note that

sum(x::L)+acc = x+sum(L)+acc [By Definition of sum]
= sum2(x+acc, L) [By IH]
= sum2(acc, x::L) [By Definition of sum2]



Structural Induction 5

append([], a) = a::[]

append(x::L, a) = x::append(L,a)

removeLast([]) = []

removeLast(x::L) = if L == [] then [] else x::removeLast(L)

Example
Claim: For all L ∈ List and a ∈N,

removeLast(append(L,a)) = L

We go by structural induction.
Case []: removeLast(append([],a)) = removeLast(a::[]) = [].
Case x::L: Note that
rL(ap(x::L, a)) = rL(x::ap(L,a))

= if ap(L,a) == [] then [] else x::rL(ap(L,a))

= if ap(L,a) == [] then [] else x::L

= x::L


