CS 13: Mathematical Foundations of Computing

Number Theory Practice

Congruences

Let a and b be integers, and let c and m be positive integers. Prove that if $ac \equiv_{cm} bc$, then $a \equiv_{m} b$.

Proof	Commentary & Scratch Work
	We're proving an implication. So, we start by as- suming the left side.
	Apply a definition to remove the \equiv_{cm} notation.
	Apply a definition to remove the divides notation.
	Arithmetic.
	Conclude why we're done.

Divisibility

Prove that if $d \mid n$ and $n \mid m$, that $d \mid m$.

Evens and Odds

(a) Let $a \in \mathbb{Z}$. Prove a(a+1) is even.

We go by cases. SNAPOSE a is even. Then, by def. $a = \partial k$ for some ket SO, $a(a+1) = \partial k (\partial k+1) = \partial (k (\partial k+1))$, Since we found an $k \in \mathbb{Z}$ (namely, $k(\partial k+1)$) Such that $a(a+1) = \partial k$, a aver, a(a+)) (b) Let k be an odd integer. Prove that 8 k**Commentary & Scratch Work** Proof KSDLF) ka-1 = (21+1 Use the definition of odd. Substitute into the definition of odd. 54(0° =40 Arithmetic Apply part (a) Combine results. Apply a definition. Conclude why we're done

Subset Proof

Prove that if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Proof	Commentary & Scratch Work
	Define variables and assume something to start proving an implication.
	The definition of subset is an implication. So, cre- ate a variable to work with.
	Apply the definition of subset.
	Apply the definition of subset again.
	Conclude why we're done.