
Mathematical Foundations
of Computing

CS
13

Adam Blank Fall 2023

CSE 311: Foundations of Computing

Lecture 13: Modular Inverses

Division

Let’s get existential.
What, really, IS division?

Division

In normal arithmetic, if I multiply x * (1/x), I get back 1.

In MODULAR arithmetic, if I multiply x * ?, I get back 1.

“1/x” is the unique number that, when multiplied by x gives 1.

-

7 .xMod 10

x
-

3

Greatest Common Divisor

GCD(a, b):
 Largest integer ! such that ! ∣ # and ! ∣ $

• GCD(100, 125) =
• GCD(17, 49) =
• GCD(11, 66) =
• GCD(13, 0) =
• GCD(180, 252) =

GCD and Factoring

a = 23 • 3 • 52 • 7 • 11 = 46,200

b = 2 • 32 • 53 • 7 • 13 = 204,750

GCD(a, b) = 2min(3,1) • 3min(1,2) • 5min(2,3) • 7min(1,1) • 11min(1,0) • 13min(0,1)

Factoring is expensive!
 Can we compute GCD(a,b) without factoring?

Useful GCD Fact

If a and b are positive integers, then
 gcd(a,b) = gcd(b, a mod b)
↳↳

Useful GCD Fact

If a and b are positive integers, then
 gcd(a,b) = gcd(b, a mod b)

Proof:
 By definition of mod, a = qb+ (a mod b) for some integer q=a div b.

 Let d=gcd(a,b). Then d|a and d|b so a=kd and b=jd for some integers k and j.
 Therefore (a mod b) = a – qb = kd – qjd = d(k – qj).
 So, d | (a mod b) and since d | b we must have d ≤ gcd(b, a mod b).

 Now, let e=gcd(b, a mod b). Then e | b and e | (a mod b). It follows
 that b=me and (a mod b) = ne for some integers m and n. Therefore
 a = qb+ (a mod b) = qme + ne = e(qm+n)
 So, e | a and since e | b we must have e ≤ gcd(a, b).

 Therefore gcd(a, b)=gcd(b, a mod b).

Euclid’s Algorithm

gcd(a, 0) = a
gcd(a, b) = gcd(b, a mod b)

GCD Algorithm

If a and b are positive integers, then
 gcd(a,b) = gcd(b, a mod b)

gcd(126, 660) =

Euclid’s Algorithm

gcd(a, 0) = a
gcd(a, b) = gcd(b, a mod b)

GCD Algorithm

If a and b are positive integers, then
 gcd(a,b) = gcd(b, a mod b)

gcd(126, 660) = gcd(660, 126 mod 660)
 = gcd(660, 126)
 = gcd(126, 660 mod 126)
 = gcd(126, 30)
 = gcd(30, 126 mod 60)
 = gcd(30, 6)
 = gcd(6, 30 mod 6)
 = gcd(6, 0)
 = 6

Euclid’s Algorithm

gcd(a, b) {
 if (b == 0) {
 return a;
 }
 else {
 return gcd(b, a mod b);
 }
}

gcd(a, 0) = a
gcd(a, b) = gcd(b, a mod b)

GCD Algorithm

Finding x & y

If a and b are positive integers, then there exist integers
x(a,b) and y(a,b) such that

gcd(a, b) = ax(a,b) + by(a,b)

Bézout’s Theorem

gcd(a, 0) = a
gcd(a, b) = gcd(b, a mod b)

GCD Algorithm
-

A
A

-> I - 18x
I -y

7 Mod 18 10(x +z) + z(y - 10)

-
1 = y

Finding x & y

If a and b are positive integers, then
there exist integers x(a,b) and y(a,b)
such that gcd(a, b) = ax(a,b) + by(a,b)

Bézout’s Theorem

gcd(a, 0) = a*Xa,0 + 0*Ya,0

gcd(a, 0) = a
gcd(a, b) = gcd(b, a mod b)

GCD Algorithm

Case 1: gcd(a, 0) = a

- !
= G

⑧

Finding x & y

gcd(a, b) = aXa,b + bYa,b

If a and b are positive integers, then
there exist integers x(a,b) and y(a,b)
such that gcd(a, b) = ax(a,b) + by(a,b)

Bézout’s Theorem

gcd(a, 0) = a*1 + 0*0
gcd(a, b) = gcd(b, a mod b)

GCD Algorithm

We’ve figured out the answer
for the “base case”.Case 2: gcd(a, b) = gcd(b, a mod b)

Case 2: gcd(a, b) = gcd(b, a mod b)

Finding x & y

gcd(a, b) = aXa,b + bYa,b
 = gcd(b, a mod b) = ?????????

If a and b are positive integers, then
there exist integers x(a,b) and y(a,b)
such that gcd(a, b) = ax(a,b) + by(a,b)

Bézout’s Theorem

gcd(a, 0) = a*1 + 0*0
gcd(a, b) = gcd(b, a mod b)

GCD Algorithm

We’re stuck. We need to find Xa,b and Ya,b.
We’re looking for an equation with a*x + b*y. The “a mod b” doesn’t
belong.

Division Theorem
a = b(a div b) + (a mod b)

gcd(b, a mod b) = bXb,a mod b + (a mod b)Yb,a mod b

Case 2: gcd(a, b) = gcd(b, a mod b)

Finding x & y

gcd(a, b) = aXa,b + bYa,b
 = gcd(b, a mod b) = ?????????

If a and b are positive integers, then
there exist integers x(a,b) and y(a,b)
such that gcd(a, b) = ax(a,b) + by(a,b)

Bézout’s Theorem

gcd(a, 0) = a*1 + 0*0
gcd(a, b) = gcd(b, a mod b)

GCD Algorithm

We’re stuck. We need to find Xa,b and Ya,b.
We’re looking for an equation with a*x + b*y. The “a mod b” doesn’t
belong.

Division Theorem
a = b(a div b) + (a mod b)

(a mod b) = a – b(a div b)

gcd(b, a mod b) = bXb,a mod b + (a mod b)Yb,a mod b
 = bXb,a mod b + (a – b(a div b))Yb,a mod b

Case 2: gcd(a, b) = gcd(b, a mod b)

Finding x & y

gcd(a, b) = aXa,b + bYa,b
 = gcd(b, a mod b) = ?????????

If a and b are positive integers, then
there exist integers x(a,b) and y(a,b)
such that gcd(a, b) = ax(a,b) + by(a,b)

Bézout’s Theorem

gcd(a, 0) = a*1 + 0*0
gcd(a, b) = gcd(b, a mod b)

GCD Algorithm

We’re still looking for Xa,b and Ya,b. The equation has a and b terms. Group
them...

gcd(b, a mod b) = bXb,a mod b + (a mod b)Yb,a mod b
 = bXb,a mod b + (a – b(a div b))Yb,a mod b

Case 2: gcd(a, b) = gcd(b, a mod b)

Finding x & y

gcd(a, b) = aXa,b + bYa,b
 = gcd(b, a mod b) = ?????????

If a and b are positive integers, then
there exist integers x(a,b) and y(a,b)
such that gcd(a, b) = ax(a,b) + by(a,b)

Bézout’s Theorem

gcd(a, 0) = a*1 + 0*0
gcd(a, b) = gcd(b, a mod b)

GCD Algorithm

We’re still looking for Xa,b and Ya,b. The equation has a and b terms. Group
them…

gcd(b, a mod b) = bXb,a mod b + (a mod b)Yb,a mod b
 = bXb,a mod b + (a – b(a div b))Yb,a mod b

= bXb,a mod b + aYb,a mod b – b(a div b)Yb,a mod b

Case 2: gcd(a, b) = gcd(b, a mod b)

Finding x & y

gcd(a, b) = aXa,b + bYa,b
 = gcd(b, a mod b) = ?????????

If a and b are positive integers, then
there exist integers x(a,b) and y(a,b)
such that gcd(a, b) = ax(a,b) + by(a,b)

Bézout’s Theorem

gcd(a, 0) = a*1 + 0*0
gcd(a, b) = gcd(b, a mod b)

GCD Algorithm

We’re still looking for Xa,b and Ya,b. The equation has a and b terms. Group
them…

gcd(b, a mod b) = bXb,a mod b + (a mod b)Yb,a mod b
 = bXb,a mod b + (a – b(a div b))Yb,a mod b

= bXb,a mod b + aYb,a mod b – b(a div b)Yb,a mod b
 = b(Xb,a mod b – (a div b)Yb,a mod b) + aYb,a mod b

Case 2: gcd(a, b) = gcd(b, a mod b)

Finding x & y

gcd(a, b) = aXa,b + bYa,b
 = gcd(b, a mod b) = ?????????

If a and b are positive integers, then
there exist integers x(a,b) and y(a,b)
such that gcd(a, b) = ax(a,b) + by(a,b)

Bézout’s Theorem

gcd(a, 0) = a*1 + 0*0
gcd(a, b) = gcd(b, a mod b)

GCD Algorithm

We’re still looking for Xa,b and Ya,b. The equation has a and b terms. Group
them…

gcd(b, a mod b) = bXb,a mod b + (a mod b)Yb,a mod b
 = bXb,a mod b + (a – b(a div b))Yb,a mod b

= bXb,a mod b + aYb,a mod b – b(a div b)Yb,a mod b
 = b(Xb,a mod b – (a div b)Yb,a mod b) + aYb,a mod b
 = aYb,a mod b + b(Xb,a mod b – (a div b)Yb,a mod b)

gcd(b, a mod b) = aYb,a mod b + b(Xb,a mod b – (a div b)Yb,a mod b)

Case 2: gcd(a, b) = gcd(b, a mod b)

Finding x & y

gcd(a, b) = aXa,b + bYa,b
 = gcd(b, a mod b)
 = aYb,a mod b + b(Xb,a mod b – (a div b)Yb,a mod b)

If a and b are positive integers, then
there exist integers x(a,b) and y(a,b)
such that gcd(a, b) = ax(a,b) + by(a,b)

Bézout’s Theorem

gcd(a, 0) = a*1 + 0*0
gcd(a, b) = gcd(b, a mod b)

GCD Algorithm

Case 2: gcd(a, b) = gcd(b, a mod b)

Finding x & y

gcd(a, b) = aXa,b + bYa,b
 = gcd(b, a mod b)
 = aYb,a mod b + b(Xb,a mod b – (a div b)Yb,a mod b)

If a and b are positive integers, then
there exist integers x(a,b) and y(a,b)
such that gcd(a, b) = ax(a,b) + by(a,b)

Bézout’s Theorem

egcd(a, 0) = a*1 + 0*0
egcd(a, b) = a*Yb,a mod b + b*(Xb,a mod b – (a div b)Yb,a mod b)

EGCD Algorithm

gcd(a, 0) = a
gcd(a, b) = gcd(b, a mod b)

GCD Algorithm

Finding x & y

egcd(a, 0) = a*1 + 0*0
egcd(a, b) = a*Yb,a mod b + b*(Xb,a mod b – (a div b)Yb,a mod b)

EGCD Algorithm

gcd(a, 0) = a
gcd(a, b) = gcd(b, a mod b)

GCD Algorithm

egcd(a, 0) = (a, 1, 0)

egcd(a, b) = (gcd(b, a mod b), Yb,a mod b, Xb,a mod b – (a div b)*Yb,a mod b)

EGCD Algorithm

