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CSE 311: Foundations of Computing

Lecture 13:  Modular Inverses



Division

Let’s get existential.  
What, really, IS division?



Division

In normal arithmetic, if I multiply x * (1/x), I get back 1.

In MODULAR arithmetic, if I multiply x * ?, I get back 1.

“1/x” is the unique number that, when multiplied by x gives 1.
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Greatest Common Divisor

GCD(a, b): 
 Largest integer ! such that ! ∣ # and ! ∣ $

•   GCD(100, 125) = 
•   GCD(17, 49)  = 
•   GCD(11, 66)  =
•   GCD(13, 0)  = 
•   GCD(180, 252) =



GCD and Factoring

a = 23 • 3 • 52 • 7 • 11 = 46,200

b = 2 • 32 • 53 • 7 • 13 = 204,750

GCD(a, b) = 2min(3,1) • 3min(1,2) • 5min(2,3) • 7min(1,1) • 11min(1,0) • 13min(0,1)

Factoring is expensive!    
     Can we compute GCD(a,b) without factoring?



Useful GCD Fact

If a and b are positive integers, then      
   gcd(a,b) = gcd(b, a mod b)
↳↳



Useful GCD Fact

If a and b are positive integers, then      
   gcd(a,b) = gcd(b, a mod b)

Proof:
 By definition of  mod,         a = qb+ (a mod b)  for some integer q=a div b.  

        Let d=gcd(a,b).  Then d|a and d|b so a=kd and b=jd for some integers k and j. 
        Therefore (a mod b) = a – qb = kd – qjd = d(k – qj).  
 So, d | (a mod b)  and since d | b we must have d ≤ gcd(b, a mod b).

 Now, let e=gcd(b, a mod b).  Then e | b and e | (a mod b).  It follows
 that  b=me and (a mod b) = ne for some integers m and n.    Therefore
                           a = qb+ (a mod b)  = qme +  ne = e(qm+n)    
        So, e | a and since e | b we must have e ≤ gcd(a, b).

        Therefore gcd(a, b)=gcd(b, a mod b).



Euclid’s Algorithm

gcd(a, 0) = a
gcd(a, b) = gcd(b, a mod b)

GCD Algorithm

If a and b are positive integers, then      
   gcd(a,b) = gcd(b, a mod b)

gcd(126, 660) =



Euclid’s Algorithm

gcd(a, 0) = a
gcd(a, b) = gcd(b, a mod b)

GCD Algorithm

If a and b are positive integers, then      
   gcd(a,b) = gcd(b, a mod b)

gcd(126, 660) = gcd(660, 126 mod 660)
              = gcd(660, 126)
              = gcd(126, 660 mod 126)
              = gcd(126, 30)
              = gcd(30, 126 mod 60)
              = gcd(30, 6)
              = gcd(6, 30 mod 6)
              = gcd(6, 0)
              = 6



Euclid’s Algorithm

gcd(a, b) {
 if (b == 0) {
  return a;
 }
 else {
  return gcd(b, a mod b);
 }
}

gcd(a, 0) = a
gcd(a, b) = gcd(b, a mod b)

GCD Algorithm



Finding x & y

If a and b are positive integers, then there exist integers 
x(a,b) and y(a,b) such that 

gcd(a, b) = ax(a,b) + by(a,b)

Bézout’s Theorem

gcd(a, 0) = a
gcd(a, b) = gcd(b, a mod b)

GCD Algorithm
-
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Finding x & y

If a and b are positive integers, then 
there exist integers x(a,b) and y(a,b) 
such that gcd(a, b) = ax(a,b) + by(a,b)

Bézout’s Theorem

gcd(a, 0) = a*Xa,0 + 0*Ya,0

gcd(a, 0) = a
gcd(a, b) = gcd(b, a mod b)

GCD Algorithm

Case 1:  gcd(a, 0) = a

- !
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Finding x & y

gcd(a, b) = aXa,b + bYa,b

If a and b are positive integers, then 
there exist integers x(a,b) and y(a,b) 
such that gcd(a, b) = ax(a,b) + by(a,b)

Bézout’s Theorem

gcd(a, 0) = a*1 + 0*0
gcd(a, b) = gcd(b, a mod b)

GCD Algorithm

We’ve figured out the answer 
for the “base case”.Case 2:  gcd(a, b) = gcd(b, a mod b)



Case 2:  gcd(a, b) = gcd(b, a mod b)

Finding x & y

gcd(a, b) = aXa,b + bYa,b
          = gcd(b, a mod b) = ?????????

If a and b are positive integers, then 
there exist integers x(a,b) and y(a,b) 
such that gcd(a, b) = ax(a,b) + by(a,b)

Bézout’s Theorem

gcd(a, 0) = a*1 + 0*0
gcd(a, b) = gcd(b, a mod b)

GCD Algorithm

We’re stuck.  We need to find Xa,b and Ya,b. 
We’re looking for an equation with a*x + b*y.  The “a mod b” doesn’t 
belong.

Division Theorem
a = b(a div b) + (a mod b)

gcd(b, a mod b) = bXb,a mod b + (a mod b)Yb,a mod b



Case 2:  gcd(a, b) = gcd(b, a mod b)

Finding x & y

gcd(a, b) = aXa,b + bYa,b
          = gcd(b, a mod b) = ?????????

If a and b are positive integers, then 
there exist integers x(a,b) and y(a,b) 
such that gcd(a, b) = ax(a,b) + by(a,b)

Bézout’s Theorem

gcd(a, 0) = a*1 + 0*0
gcd(a, b) = gcd(b, a mod b)

GCD Algorithm

We’re stuck.  We need to find Xa,b and Ya,b. 
We’re looking for an equation with a*x + b*y.  The “a mod b” doesn’t 
belong.

Division Theorem
a = b(a div b) + (a mod b)

(a mod b) = a – b(a div b)

gcd(b, a mod b) = bXb,a mod b + (a mod b)Yb,a mod b
                = bXb,a mod b + (a – b(a div b))Yb,a mod b



Case 2:  gcd(a, b) = gcd(b, a mod b)

Finding x & y

gcd(a, b) = aXa,b + bYa,b
          = gcd(b, a mod b) = ?????????

If a and b are positive integers, then 
there exist integers x(a,b) and y(a,b) 
such that gcd(a, b) = ax(a,b) + by(a,b)

Bézout’s Theorem

gcd(a, 0) = a*1 + 0*0
gcd(a, b) = gcd(b, a mod b)

GCD Algorithm

We’re still looking for Xa,b and Ya,b.  The equation has a and b terms.  Group 
them...

gcd(b, a mod b) = bXb,a mod b + (a mod b)Yb,a mod b
                = bXb,a mod b + (a – b(a div b))Yb,a mod b



Case 2:  gcd(a, b) = gcd(b, a mod b)

Finding x & y

gcd(a, b) = aXa,b + bYa,b
          = gcd(b, a mod b) = ?????????

If a and b are positive integers, then 
there exist integers x(a,b) and y(a,b) 
such that gcd(a, b) = ax(a,b) + by(a,b)

Bézout’s Theorem

gcd(a, 0) = a*1 + 0*0
gcd(a, b) = gcd(b, a mod b)

GCD Algorithm

We’re still looking for Xa,b and Ya,b.  The equation has a and b terms.  Group 
them…

gcd(b, a mod b) = bXb,a mod b + (a mod b)Yb,a mod b
                = bXb,a mod b + (a – b(a div b))Yb,a mod b

= bXb,a mod b + aYb,a mod b – b(a div b)Yb,a mod b
                



Case 2:  gcd(a, b) = gcd(b, a mod b)

Finding x & y

gcd(a, b) = aXa,b + bYa,b
          = gcd(b, a mod b) = ?????????

If a and b are positive integers, then 
there exist integers x(a,b) and y(a,b) 
such that gcd(a, b) = ax(a,b) + by(a,b)

Bézout’s Theorem

gcd(a, 0) = a*1 + 0*0
gcd(a, b) = gcd(b, a mod b)

GCD Algorithm

We’re still looking for Xa,b and Ya,b.  The equation has a and b terms.  Group 
them…

gcd(b, a mod b) = bXb,a mod b + (a mod b)Yb,a mod b
                = bXb,a mod b + (a – b(a div b))Yb,a mod b

= bXb,a mod b + aYb,a mod b – b(a div b)Yb,a mod b
                = b(Xb,a mod b – (a div b)Yb,a mod b) + aYb,a mod b
                



Case 2:  gcd(a, b) = gcd(b, a mod b)

Finding x & y

gcd(a, b) = aXa,b + bYa,b
          = gcd(b, a mod b) = ?????????

If a and b are positive integers, then 
there exist integers x(a,b) and y(a,b) 
such that gcd(a, b) = ax(a,b) + by(a,b)

Bézout’s Theorem

gcd(a, 0) = a*1 + 0*0
gcd(a, b) = gcd(b, a mod b)

GCD Algorithm

We’re still looking for Xa,b and Ya,b.  The equation has a and b terms.  Group 
them…

gcd(b, a mod b) = bXb,a mod b + (a mod b)Yb,a mod b
                = bXb,a mod b + (a – b(a div b))Yb,a mod b

= bXb,a mod b + aYb,a mod b – b(a div b)Yb,a mod b
                = b(Xb,a mod b – (a div b)Yb,a mod b) + aYb,a mod b
                = aYb,a mod b + b(Xb,a mod b – (a div b)Yb,a mod b)

gcd(b, a mod b) = aYb,a mod b + b(Xb,a mod b – (a div b)Yb,a mod b)



Case 2:  gcd(a, b) = gcd(b, a mod b)

Finding x & y

gcd(a, b) = aXa,b + bYa,b
          = gcd(b, a mod b)
          = aYb,a mod b + b(Xb,a mod b – (a div b)Yb,a mod b)

If a and b are positive integers, then 
there exist integers x(a,b) and y(a,b) 
such that gcd(a, b) = ax(a,b) + by(a,b)

Bézout’s Theorem

gcd(a, 0) = a*1 + 0*0
gcd(a, b) = gcd(b, a mod b)

GCD Algorithm



Case 2:  gcd(a, b) = gcd(b, a mod b)

Finding x & y

gcd(a, b) = aXa,b + bYa,b
          = gcd(b, a mod b)
          = aYb,a mod b + b(Xb,a mod b – (a div b)Yb,a mod b)

If a and b are positive integers, then 
there exist integers x(a,b) and y(a,b) 
such that gcd(a, b) = ax(a,b) + by(a,b)

Bézout’s Theorem

egcd(a, 0) = a*1 + 0*0
egcd(a, b) = a*Yb,a mod b + b*(Xb,a mod b – (a div b)Yb,a mod b)

EGCD Algorithm

gcd(a, 0) = a
gcd(a, b) = gcd(b, a mod b)

GCD Algorithm



Finding x & y

egcd(a, 0) = a*1 + 0*0
egcd(a, b) = a*Yb,a mod b + b*(Xb,a mod b – (a div b)Yb,a mod b)

EGCD Algorithm

gcd(a, 0) = a
gcd(a, b) = gcd(b, a mod b)

GCD Algorithm

egcd(a, 0) = (a, 1, 0)

egcd(a, b) = (gcd(b, a mod b), Yb,a mod b, Xb,a mod b – (a div b)*Yb,a mod b)

EGCD Algorithm


