Lecture 2

Mathematical Foundations of Computer Science

CS 13: Mathematical Foundations of Computer Science

Number Representation

Symbols and Strings

Definition (Symbols and Strings)

- Let Σ be a set of symbols.
- Let $\Sigma^+ = \Sigma \cup \Sigma^2 \cup \Sigma^3 \cup \cdots$.

 Σ is called an **alphabet** $(x \in \Sigma)$ is a **symbol**, and $s \in \Sigma^+$ is a **string** (note that we're omitting the "empty string" in our definition here).

5. = 203 5- Zx2 = \$ (0,0)3 = \$ 003 {x {x { x } } = { x {x } } 5 = 58305+

Symbols and Strings

Definition (Symbols and Strings)

- Let Σ be a set of symbols.
- Let $\Sigma^+ = \Sigma \cup \Sigma^2 \cup \Sigma^3 \cup \cdots$.

 Σ is called an **alphabet**; $x \in \Sigma$ is a **symbol**, and $s \in \Sigma^+$ is a **string** (note that we're omitting the "empty string" in our definition here).

Example (Binary Numbers)

Let $\Sigma = \{0,1\}$. Then, $\Sigma^+ = \{0,1\} \cup \{00,01,10,11\} \cup \cdots$. That is, Σ^+ is the set of all binary numbers.

Symbols and Strings

Definition (Symbols and Strings)

- Let Σ be a set of symbols.
- Let $\Sigma^+ = \Sigma \cup \Sigma^2 \cup \Sigma^3 \cup \cdots$.

 Σ is called an **alphabet**; $x \in \Sigma$ is a **symbol**, and $s \in \Sigma^+$ is a **string** (note that we're omitting the "empty string" in our definition here).

Example (Binary Numbers)

Let $\Sigma = \{0,1\}$. Then, $\Sigma^+ = \{0,1\} \cup \{00,01,10,11\} \cup \cdots$. That is, Σ^+ is the set of all binary numbers.

Connection to CS 21

You'll see the ideas of grammars, decision problems, and regular expressions which are all fundamentally based on this definition of strings.

Let $\Sigma = \{ \triangle \}$. Then, $\Sigma^+ = \{ \triangle \} \cup \{ \triangle \triangle \} \cup \cdots$. That is, Σ^+ is the set of all numbers represented with a single symbol (i.e., **unary** numbers).

Let $\Sigma = \{ \triangle \}$. Then, $\Sigma^+ = \{ \triangle \} \cup \{ \triangle \triangle \} \cup \cdots$. That is, Σ^+ is the set of all numbers represented with a single symbol (i.e., **unary** numbers).

Example (Binary Numbers)

Let $\Sigma = \{0,1\}$. Then, $\Sigma^+ = \{0,1\} \cup \{00,01,10,11\} \cup \cdots$. That is, Σ^+ is the set of all binary numbers.

Let $\Sigma = \{ \triangle \}$. Then, $\Sigma^+ = \{ \triangle \} \cup \{ \triangle \triangle \} \cup \cdots$. That is, Σ^+ is the set of all numbers represented with a single symbol (i.e., **unary** numbers).

Example (Binary Numbers)

Let $\Sigma = \{0,1\}$. Then, $\Sigma^+ = \{0,1\} \cup \{00,01,10,11\} \cup \cdots$. That is, Σ^+ is the set of all binary numbers.

Example (Decimal Numbers)

Let $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Then, Σ^+ is the set of all base-10 numbers (e.g., **decimal** numbers).

XxY= \$(3)): xex, yey}

Let $\Sigma = \{ \triangle \}$. Then, $\Sigma^+ = \{ \triangle \} \cup \{ \triangle \triangle \} \cup \cdots$. That is, Σ^+ is the set of all numbers represented with a single symbol (i.e., **unary** numbers).

Example (Binary Numbers)

Let $\Sigma = \{0,1\}$. Then, $\Sigma^+ = \{0,1\} \cup \{00,01,10,11\} \cup \cdots$. That is, Σ^+ is the set of all binary numbers.

Example (Decimal Numbers)

Let $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Then, Σ^+ is the set of all base-10 numbers (e.g., **decimal** numbers).

But What Does It **MEAN**?

Unfortunately, these are just "strings" and don't **actually mean anything**. To fix this, we'll define what we call a **valuation** function for each numerical system to explain how to **interpret** the strings of symbols.

Let $\Sigma = \{ \triangle \}$. Define our valuation function, $V : \Sigma^+ \to \mathbb{N} \setminus \{0\}$, such that: $V(\triangle) = 1$ $V(\triangle X) = 1 + V(X)$ for all $X \in \Sigma^+$

Let $\Sigma = \{ \triangle \}$. Define our valuation function, $V : \Sigma^+ \to \mathbb{N} \setminus \{0\}$, such that: $V(\triangle) = 1$ $V(\triangle X) = 1 + V(X)$ for all $X \in \Sigma^*$ $\langle (N^{k}) \rangle$ -3 X Existence (surjectivity of VV(A) = 1Def $V(\Omega^{(k+1)}) = V(\Omega \Lambda^{(k)}) = 1 + V(\Omega^{(k)})$ +X) = 1

Let $\Sigma = \{ \triangle \}$. Define our valuation function, $V : \Sigma^+ \to \mathbb{N} \setminus \{0\}$, such that: $V(\triangle) = 1$ $V(\triangle X) = 1 + V(X)$ for all $X \in \Sigma^+$

Uniqueness (injectivity of V)

V(X) = V(Y) = X = Y $V(A^{K}) = K$ $V(A^{K}) = K \leq E = V(A^{K})$ $V(A^{K}) = K \leq E = V(A^{K})$

Let $\Sigma = \{ \triangle \}$. Define our valuation function, $V : \Sigma^+ \to \mathbb{N} \setminus \{0\}$, such that: $V(\triangle) = 1$ $V(\triangle X) = 1 + V(X)$ for all $X \in \Sigma^+$

Uniqueness (injectivity of V)

Lemma. We show that V is strictly increasing based on the length of the input. That is, for all $k \in \mathbb{N} \setminus \{0\}$, if $k < \ell$, then $V(\triangle^k) < V(\triangle^\ell)$. We go by strong induction.

- Base Case (ℓ = 1). Vacuously, this claim holds since there are no k < 1.</p>
- Induction Hypothesis: Suppose for some $\ell \in \mathbb{N} \setminus \{0\}$, for all $k \in \mathbb{N} \setminus \{0\}$, if $k < \ell$, then $V(\Delta^k) < V(\Delta^\ell)$.
- Induction Step. Let $k \in \mathbb{N} \setminus \{0\}$ where $k < \ell + 1$. Then, $V(\Delta^{\ell+1}) = 1 + V(\Delta^{\ell}) \ge 1 + V(\Delta^k) > V(\Delta^k)$.

Proof. We show that if V(X) = V(Y), then X = Y by contrapositive. Suppose $X \neq Y$. Then, $X = \triangle^k$ and $Y = \triangle^\ell$ for some $k, \ell \in \mathbb{N} \setminus \{0\}$ where $k \neq \ell$. Without loss of generality, assume $k < \ell$. Then, by the lemma $V(k) < V(\ell)$ which means they are not equal.

Unsigned Binary Numbers

Let $\Sigma = \{0,1\}$. Define our valuation function, $V : \Sigma^+ \to \mathbb{N}$, such that: V(b) = b for all $b \in \Sigma$ V(Xb) = 2V(X) + b for all $X \in \Sigma^+$, for $b \in \Sigma$

Find and prove a summation form for V We claim a summation form for V is $V(b_{n-1}b_{n-2}\cdots b_0) = \sum_{i} \sum_{j} b_j$ If $b \in \mathcal{L}^+$ $V(b) = V(b_{n-1}b_{n-2}\cdots b_0) = \sum_{i} \sum_{j} \sum_{j} b_j$ Suppose the claim holds for all strings of length K for some KEN (563 $b_K b_{K+1} \cdots b_1$

Unsigned Binary Numbers

Let $\Sigma = \{0,1\}$. Define our valuation function, $V : \Sigma^+ \to \mathbb{N}$, such that: V(b) = b for all $b \in \Sigma$ V(Xb) = 2V(X) + b for all $X \in \Sigma^+$, for $b \in \Sigma$

Find and prove a summation form for V

We claim a summation form for V is $V(b_{n-1}b_{n-2}\cdots b_0) = \sum_{k=0}^{n-1} b_k 2^k$.

We go by induction on the length of the string.

The assembly instructions our computers use only work on a fixed number of bits. That is, basic operations act on vectors of $\{0,1\}^w$ for some fixed width w.

The assembly instructions our computers use only work on a fixed number of bits. That is, basic operations act on vectors of $\{0,1\}^w$ for some fixed width w.

Let's look at addition. To make our machine work, we need add to output a vector of w bits, like so:

add: $\{0,1\}^{w} \times \{0,1\}^{w} \to \{0,1\}^{w}$

The assembly instructions our computers use only work on a fixed number of bits. That is, basic operations act on vectors of $\{0,1\}^w$ for some fixed width w.

Let's look at addition. To make our machine work, we need add to output a vector of w bits, like so:

add: $\{0,1\}^w \times \{0,1\}^w \to \{0,1\}^w$

As above, we have
$$V(b_{w-1}b_{w-2}\cdots b_0) = \sum_{k=0}^{w-1} b_k 2^k$$
.

The assembly instructions our computers use only work on a fixed number of bits. That is, basic operations act on vectors of $\{0,1\}^w$ for some fixed width w.

Let's look at addition. To make our machine work, we need add to output a vector of w bits, like so:

add: $\{0,1\}^w \times \{0,1\}^w \to \{0,1\}^w$

As above, we have
$$V(b_{w-1}b_{w-2}\cdots b_0) = \sum_{k=0}^{w-1} b_k 2^k$$
.

Unfortunately, this formula can "overflow" and need w+1 bits to be represented. To fix this, we can define add as:

$$\operatorname{add}(a,b) = [V(a) + V(b)] \mod 2^w$$

Notably, V always outputs a **non-negative** number which is a problem because we'd like to be able to represent negative numbers in binary. To fix this, we define an alternate valuation function as follows:

$$S(b_{w-1}b_{w-2}\cdots b_0) = -b_{w-1}2^{w-1} + \sum_{k=0}^{w-2} b_k 2^k$$

Notably, V always outputs a **non-negative** number which is a problem because we'd like to be able to represent negative numbers in binary. To fix this, we define an alternate valuation function as follows:

$$S(b_{w-1}b_{w-2}\cdots b_0) = -b_{w-1}2^{w-1} + \sum_{k=0}^{w-2} b_k 2^k$$

Note that the co-domain of S is $[-2^{w-1}, 2^{w-1}-1]$ make it **not symmetric**.

Notably, V always outputs a **non-negative** number which is a problem because we'd like to be able to represent negative numbers in binary. To fix this, we define an alternate valuation function as follows:

$$S(b_{w-1}b_{w-2}\cdots b_0) = -b_{w-1}2^{w-1} + \sum_{k=0}^{w-2} b_k 2^k$$

Note that the co-domain of S is $[-2^{w-1}, 2^{w-1}-1]$ make it **not symmetric**.

Interestingly, our previous definition of add still works perfectly for this system.

Notably, V always outputs a **non-negative** number which is a problem because we'd like to be able to represent negative numbers in binary. To fix this, we define an alternate valuation function as follows:

$$S(b_{w-1}b_{w-2}\cdots b_0) = -b_{w-1}2^{w-1} + \sum_{k=0}^{w-2} b_k 2^k$$

Note that the co-domain of S is $[-2^{w-1}, 2^{w-1}-1]$ make it **not symmetric**.

Interestingly, our previous definition of add still works perfectly for this system.

We call this representation **Two's Complement**, and it's how your computer represents signed numbers internally.

Notably, V always outputs a **non-negative** number which is a problem because we'd like to be able to represent negative numbers in binary. To fix this, we define an alternate valuation function as follows:

$$S(b_{w-1}b_{w-2}\cdots b_0) = -b_{w-1}2^{w-1} + \sum_{k=0}^{w-2} b_k 2^k$$

Note that the co-domain of S is $[-2^{w-1}, 2^{w-1}-1]$ make it **not symmetric**.

Interestingly, our previous definition of add still works perfectly for this system.

We call this representation **Two's Complement**, and it's how your computer represents signed numbers internally.

Connection to CS 24

You'll see Two's Complement come up repeatedly in CS 24 where we actually work with memory at the bit level.