

Mathematical Foundations of Computing

CS 13: Mathematical Foundations of Computing

Lecture 01: Induction

Administerial - Late Tokens - Lectur Bes this Week
- Reminder: use template & Leptex

Method for proving statements about all natural numbers

- A new proof technique!
	- It only applies over the natural numbers
	- The idea is to **use** the special structure of the naturals to prove things more easily

– Particularly useful for reasoning about programs!

 for(int i=0; i < n; n++) { … }

• Show P(i) holds after i times through the loop **public int f(int x) {**

 if (x == 0) { return 0; }

$$
else { return f(x - 1);}
$$

- **}**
	- $f(x) = x$ for all values of $x \ge 0$ naturally shown by induction.

So, make one!

Domain: Natural Numbers

$$
P(0)
$$

$$
\forall k (P(k) \rightarrow P(k+1))
$$

 $\therefore \forall n P(n)$

Induction Is A Rule of Inference

Domain: Natural Numbers

$$
\forall k (P(k) \rightarrow P(k+1))
$$

$$
\therefore \forall n P(n)
$$

How does this technique prove P(5)?

 $D(\Lambda)$

Induction Is A Rule of Inference

Induction Is A Rule of Inference

First, we prove P(0). Since $P(n) \rightarrow P(n+1)$ for all n, we have $P(0) \rightarrow P(1)$. Since $P(0)$ is true and $P(0) \rightarrow P(1)$, by Modus Ponens, $P(1)$ is true. Since $P(n) \rightarrow P(n+1)$ for all n, we have $P(1) \rightarrow P(2)$. Since $P(1)$ is true and $P(1) \rightarrow P(2)$, by Modus Ponens, $P(2)$ is true.

5 Steps To Inductive Proofs In English

Proof:

- 1. "We will show that $P(n)$ is true for every $n \ge 0$ by Induction."
- 2. "Base Case:" Prove P(0)
- 3. "Inductive Hypothesis:"

Assume P(k) is true for some arbitrary integer $k \ge 0$ "

- 4. "Inductive Step:" Want to prove that P(k+1) is true: Use the goal to figure out what you need. Make sure you are using I.H. and point out where
	- you are using it. (Don't assume P(k+1) !!)
- 5. "Conclusion: Result follows by induction"

Prove $1 + 2 + 4 + ... + 2^n = 2^{n+1} - 1$

Base Case $(n=0)$:

Note that $2^0 = 1 = 2 - 1 = 2^{0+1} - 1$, which is exactly $P(0)$.

Induction Hypothesis:

Suppose $P(k)$ is true for some $k \in \mathbb{N}$.

Prove
$$
1 + 2 + 4 + ... + 2^n = 2^{n+1} - 1
$$

Let
$$
P(n)
$$
 be $\sum_{i=0}^{n} 2^i = 2^{n+1} - 1$. We go by induction on *n*.

Base Case $(n=0)$:

Note that $2^0 = 1 = 2 - 1 = 2^{0+1} - 1$, which is exactly $P(0)$.

Induction Hypothesis:

Suppose $P(k)$ is true for some $k \in \mathbb{N}$.

Induction Step:

We want to show $P(k+1)$. That is, we want to show:

We want to show
$$
P(k + 1)
$$
. That is, we want to show:
\n
$$
\sum_{i=0}^{k+1} 2^{i} = 2^{(k+1)+1} - 1 \sum_{i=0}^{k+1} \sum_{j=0}^{2^{k+1}} 4 \sum_{j=0}^{2^{k+1}} 3^{(k+j)i}
$$
\n
$$
\sum_{i=0}^{k+1} 2^{i} = ... = ... = 2^{n+1} - 1.
$$
\nSo, the claim is true for all natural numbers by induction.

Prove
$$
1 + 2 + 4 + ... + 2^n = 2^{n+1} - 1
$$

Prove
$$
1 + 2 + 4 + ... + 2^n = 2^{n+1} - 1
$$

\nLet $P(n)$ be $\sum_{i=0}^{n} 2^i = 2^{n+1} - 1$. We go by induction on *n*.
\nBase Case (n=0): Note that $2^0 = 1 = 2 - 1 = 2^{0+1} - 1$, which is exactly $P(0)$.
\nInduction Hypothesis: Suppose $P(R)$ is true for some $k \in \mathbb{N}$.
\nInduction Step: We want to show $P(k+1)$. That is, we want to show: $\sum_{i=0}^{k+1} 2^i = 2^{(k+1)+1} - 1$
\nNote that $\sum_{i=0}^{k+1} 2^i =$ We know (by II)...

<u>Base Case (n=0):</u> Note that $2^0 = 1 = 2 - 1 = 2^{0+1} - 1$, which is exactly $P(0)$. Induction Hypothesis: $Suppose(P(R))$ is true for some $k \in \mathbb{N}$. <u>Induction Step:</u> We want to show $P(K + 1)$. That is, we want to show: \sum $i = 0$ $k+1$ $2^i = 2^{(k+1)+1} - 1$ $= 1 = 1$

Note that
$$
\sum_{i=0}^{k+1} 2^i =
$$

This is exactly $P(k + 1)$. So, $P(k) \rightarrow P(k + 1)$.

So, the claim is true for all natural numbers by induction.

We're trying to get… We know (by IH)… $S_{\nu} =$ $3 + 3 - 1$

Our goal is to find a sub-expression of the left that looks like the left side of the IH.

Prove
$$
1 + 2 + 4 + ... + 2^n = 2^{n+1} - 1
$$

Let
$$
P(n)
$$
 be $\sum_{i=0}^{n} 2^i = 2^{n+1} - 1$. We go by induction on *n*.

<u>Base Case (n=0):</u> Note that $2^0 = 1 = 2 - 1 = 2^{0+1} - 1$, which is exactly $P(0)$. Induction Hypothesis: Suppose $P(k)$ is true for some $k \in \mathbb{N}$. <u>Induction Step:</u> We want to show P($k+1$). That is, we want to show: \sum $i = 0$ $k+1$ $2^i = 2^{(k+1)+1} - 1$

Induction Hypothesis: Suppose *P*(*K*) Is true for some *K* ∈ ℕ.
\nInduction Step: We want to show *P*(*k* + 1). That is, we want to show:
$$
\sum_{i=0}^{k+1} 2^{i} = 2^{(k+1)+1} - 1
$$

\nNote that $\sum_{i=0}^{k+1} 2^{i} = \left(\sum_{i=0}^{k} 2^{i}\right) + 2^{k+1}$ [Splitting the summation]
\n $\left(2^{k+1} - 1\right) + 2^{k+1}$ [By IH]
\nDon't bother justifying the "obvious" steps. $= \left(2^{k+1} + 2^{k+1}\right) - 1$ [Associ of +]
\nBut make sure you say
\n"by IH" somewhere. $\Rightarrow \left(2(2^{k+1})\right) - 1$ [Factoring]
\n $= 2^{k+2} - 1$ [Simplifying]
\nThis is exactly *P*(*k* + 1). So, *P*(*k*) → *P*(*k* + 1).

left side of the IH.

So, the claim is true for all natural numbers by induction.

Prove $1 + 2 + 3 + ... + n = n(n+1)/2$

Let $P(n)$ be \sum $i = 0$ $\, n$ $i =$ $e\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$. We go by induction on *n*.

<u>Base Case $(n=0)$:</u>

Induction Hypothesis:

<u>Induction Step:</u>

This is exactly $P(k + 1)$. So, $P(k) \rightarrow P(k + 1)$.

So, the claim is true for all natural numbers by induction.

We know (by IH)…

We're trying to get…

Our goal is to find a sub-expression of the left that looks like the left side of the IH.

Prove $1 + 2 + 3 + ... + n = n(n+1)/2$

Let
$$
P(n)
$$
 be $\sum_{i=0}^{n} i = \frac{n(n+1)^n}{2}$. We go by induction on *n*.
\nBase Case (n=0): Note that $\sum_{i=0}^{s} i = 0 = \frac{o(0+1)}{2}$, which is exactly $P(0)$.
\nInduction Hypothesis: Suppose $P(k)$ is true for some $k \in \mathbb{N}$.
\nInduction Step: We want to show $P(k+1)$. That is, we want to show: $\sum_{i=0}^{k+1} i = \frac{(k+1)(k+2)}{2}$
\nNote that $\sum_{i=0}^{k+1} i = \left(\sum_{i=0}^{k} i\right) + (k+1)$ [Splitting the summation]
\n $= \left(\frac{k(k+1)}{2}\right) + (k+1)$ [By IH]
\nWe know (by IH)...
\n $= (k+1)\left(\frac{k}{2} + 1\right) - (k+1)\left(\frac{k+2}{2}\right)$ [Algebra]
\nWe're trying to get...
\n $\sum_{i=0}^{k+1} i = \frac{(k+1)(k+2)}{2}$

$$
= (k+1)\left(\frac{k}{2} + 1\right) = (k+1)\left(\frac{k+2}{2}\right)
$$
 [Algebra]

$$
= \frac{(k+1)(k+2)}{2}
$$
 [Algebra]

So, the claim is true for all natural numbers by induction. This is exactly $P(k + 1)$. So, $P(k) \rightarrow P(k + 1)$.

Our goal is to find a sub-expression of the left that looks like the left side of the IH.

2

 $i = 0$

Prove $3^n \ge n^2$ for all $n \ge 3$.

Let $P(n)$ be "3" $\geq n^2$ ". We go by induction on n. $\geq \frac{3}{2}$ $\geq \frac{3}{4}$ $\geq \frac{9}{4}$ ≥ 9 $\geq \frac{3}{4}$ ≥ 9 $\geq \frac{3}{4}$ ≥ 9 Induction Hypothesis: Suppose the Closin is time for some $0 \ge 3$ Induction Step: We want to show REXSASA the claim for K+1 Note that \sum $k \rightarrow$ \sum We know (by IH)... $\frac{1}{2}$ $\frac{1}{2}$ We're trying to get... = (K+1)2 This is exactly $P(k + 1)$. So, $P(k) \rightarrow P(k + 1)$.

So, the claim is true for all $n \geq 3$ by induction.

Strong Induction

 $\therefore \forall n P(n)$

Strong Induction English Proof

- 1. By induction we will show that $P(n)$ is true for every $n \geq 0$
- 2. Base Case: Prove $P(0)$
- 3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 0$, $P(i)$ is true for every *i* from 0 to k
- 4. Inductive Step: Prove that $P(k + 1)$ is true using the Inductive Hypothesis (that $P(j)$ is true for all values $\leq k$)
- 5. Conclusion: Result follows by induction

Every $n \geq 2$ can be expressed as a product of primes.

Let $P(n)$ be " $n = p_0 p_1 \cdots p_j$, where $p_0, p_1, ..., p_j$ are prime." We go by strong induction on n . We go by subhesis: Suppose the down for all 2×1
Induction Hypothesis: Suppose the down for all 2×1
Induction Hypothesis: Suppose the down for $\frac{2}{3}$ Induction Step: We go by cases. Case K is prime: We know (by IH)... CESA Kij COMBOSte: $K = a\frac{1}{9}$ for Sorressors = 1 All numbers smaller than k can be expressed as a product of primes. We're trying to get... $\mathcal{I}\mathcal{H}$ k can be expressed as a product of

primes.