Adam Blank

Fall 2023

Mathematical Foundations of Computing

CS 13: Mathematical Foundations of Computing

Lecture 01: Induction

Ad Ministering - Late Tokens - Lectur Els this week - Reminder: use tomplete & Letter

Method for proving statements about all natural numbers

- A new proof technique!
 - It only applies over the natural numbers
 - The idea is to **use** the special structure of the naturals to prove things more easily

– Particularly useful for reasoning about programs!

for(int i=0; i < n; n++) { ... }</pre>

Show P(i) holds after i times through the loop
 public int f(int x) {

if (x == 0) { return 0; }

- }
 - f(x) = x for all values of $x \ge 0$ naturally shown by induction.

So, make one!

Domain: Natural Numbers

$$P(0)$$

$$\forall k (P(k) \rightarrow P(k+1))$$

 $\therefore \forall n P(n)$

Induction Is A Rule of Inference

Domain: Natural Numbers

$$\forall k (P(k) \rightarrow P(k+1))$$

$$\therefore \forall n P(n)$$

How does this technique prove P(5)?

 $D(\Omega)$

Induction Is A Rule of Inference

Induction Is A Rule of Inference

 $\begin{array}{l} \mbox{First, we prove P(0).} \\ \mbox{Since P(n)} \rightarrow P(n+1) \mbox{ for all n, we have P(0)} \rightarrow P(1). \\ \mbox{Since P(0) is true and P(0)} \rightarrow P(1), \mbox{ by Modus Ponens, P(1) is true.} \\ \mbox{Since P(n)} \rightarrow P(n+1) \mbox{ for all n, we have P(1)} \rightarrow P(2). \\ \mbox{Since P(1) is true and P(1)} \rightarrow P(2), \mbox{ by Modus Ponens, P(2) is true.} \end{array}$

5 Steps To Inductive Proofs In English

Proof:

- **1**. "We will show that P(n) is true for every $n \ge 0$ by Induction."
- 2. "Base Case:" Prove P(0)
- 3. "Inductive Hypothesis:"

Assume P(k) is true for some arbitrary integer $k \ge 0$ "

4. "Inductive Step:" Want to prove that P(k+1) is true:
Use the goal to figure out what you need.
Make sure you are using I.H. and point out where

you are using it. (Don't assume P(k+1) !!)

5. "Conclusion: Result follows by induction"

Prove $1 + 2 + 4 + ... + 2^n = 2^{n+1} - 1$

Base Case (n=0):

Note that $2^0 = 1 = 2 - 1 = 2^{0+1} - 1$, which is exactly P(0).

Induction Hypothesis:

Suppose P(k) is true for some $k \in \mathbb{N}$.

Prove
$$1 + 2 + 4 + ... + 2^n = 2^{n+1} - 1$$

Let
$$P(n)$$
 be $\sum_{i=0}^{n} 2^i = 2^{n+1} - 1$. We go by induction on n .

Base Case (n=0):

Note that $2^0 = 1 = 2 - 1 = 2^{0+1} - 1$, which is exactly P(0).

Induction Hypothesis:

Suppose P(k) is true for some $k \in \mathbb{N}$.

Induction Step:

We want to show P(k+1). That is, we want to show:

$$\sum_{i=0}^{k+1} 2^i = 2^{(k+1)+1} - 1 \quad \text{Somegary} \quad 4 \leq 2 \leq 2^{(k+1)+1}$$

$$\sum_{i=0}^{k+1} 2^i = \dots = \dots = 2^{n+1} - 1.$$

$$\sum_{i=0}^{k+1} 2^i = \dots = \dots = 2^{n+1} - 1.$$

$$\sum_{i=0}^{k+1} 2^i = \dots = \dots = 2^{n+1} - 1.$$

$$\sum_{i=0}^{k+1} 2^i = \dots = \dots = 2^{n+1} - 1.$$

$$\sum_{i=0}^{k+1} 2^i = 2^{(k+1)+1} - 1 \quad \text{Somegary} \quad 1 \leq 2^{(k+1)+1} - 1$$

Prove
$$1 + 2 + 4 + ... + 2^n = 2^{n+1} - 1$$

Let
$$P(n)$$
 be $\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1^{n}$. We go by induction on n .

Base Case (n=0): Note that $2^0 = 1 = 2 - 1 = 2^{0+1} - 1$, which is exactly P(0). Induction Hypothesis: Suppose P(k) is true for some $k \in \mathbb{N}$. Induction Step: We want to show P(k+1). That is, we want to show: $\sum_{k=1}^{k+1} 2^i = 2^{(k+1)+1} - 1$

Note that
$$\sum_{i=0}^{k+1} 2^i =$$

This is exactly P(k + 1). So, $P(k) \rightarrow P(k + 1)$.

So, the claim is true for all natural numbers by induction.

We know (by IH)... $\zeta_{3} = \zeta_{3} = \zeta_{3} = \zeta_{3}$ j = 0We're trying to get...

Our goal is to find a sub-expression of the left that looks like the left side of the IH.

Prove
$$1 + 2 + 4 + ... + 2^n = 2^{n+1} - 1$$

Let
$$P(n)$$
 be $\sum_{i=0}^{n} 2^i = 2^{n+1} - 1$. We go by induction on n .

Base Case (n=0): Note that $2^0 = 1 = 2 - 1 = 2^{0+1} - 1$, which is exactly P(0). Induction Hypothesis: Suppose P(k) is true for some $k \in \mathbb{N}$. Induction Step: We want to show P(k+1). That is, we want to show: $\sum_{k=1}^{k+1} 2^i = 2^{(k+1)+1} - 1$

Note that
$$\sum_{i=0}^{k+1} 2^{i} = \left(\sum_{i=0}^{k} 2^{i}\right) + 2^{k+1}$$
 [Splitting the summation]

$$= \left(2^{k+1} - 1\right) + 2^{k+1}$$
 [By IH]
Don't bother justifying
the "obvious" steps.
But make sure you say
"by IH" somewhere.

$$= \left(2^{k+1} + 2^{k+1}\right) - 1$$
 [Assoc. of +]

$$= \left(2(2^{k+1})\right) - 1$$
 [Factoring]

$$= 2^{k+2} - 1$$
 [Simplifying]
This is exactly P(k + 1). So, P(k) \rightarrow P(k + 1).
We know (by IH)...

$$\sum_{i=0}^{k} 2^{i} = 2^{k+1} - 1$$

We're trying to get...

$$\sum_{i=0}^{k+1} 2^{i} = 2^{(k+1)+1} - 1$$

Our goal is to find a sub-expression of the left that leaks like the

left side of the IH.

So, the claim is true for all natural numbers by induction.

Prove 1 + 2 + 3 + ... + n = n(n+1)/2

Let P(n) be $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$ ". We go by induction on n.

Base Case (n=0):

Induction Hypothesis:

Induction Step:

This is exactly P(k + 1). So, $P(k) \rightarrow P(k + 1)$.

So, the claim is true for all natural numbers by induction.

We know (by IH)...

We're trying to get...

Our goal is to find a sub-expression of the left that looks like the left side of the IH.

Prove 1 + 2 + 3 + ... + n = n(n+1)/2

- -

Let
$$P(n)$$
 be $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}^{n}$. We go by induction on n .
Base Case (n=0): Note that $\sum_{i=0}^{0} i = 0 = \frac{0(0+1)}{2}$, which is exactly $P(0)$.
Induction Hypothesis: Suppose $P(k)$ is true for some $k \in \mathbb{N}$.
Induction Step: We want to show $P(k+1)$. That is, we want to show: $\sum_{i=0}^{k+1} i = \frac{(k+1)(k+2)}{2}$.
Note that $\sum_{i=0}^{k+1} i = (\sum_{i=0}^{k} i) + (k+1)$ [Splitting the summation]

Note that
$$\sum_{i=0}^{k} i = \left(\sum_{i=0}^{k} i\right) + (k+1)$$
 [Splitting the summation]

$$= \left(\frac{k(k+1)}{2}\right) + (k+1)$$
 [By IH]

$$= (k+1)\left(\frac{k}{2}+1\right) = (k+1)\left(\frac{k+2}{2}\right)$$
 [Algebra]

$$= \frac{(k+1)(k+2)}{2}$$
 [Algebra]

This is exactly P(k + 1). So, $P(k) \rightarrow P(k + 1)$. So, the claim is true for all natural numbers by induction. We know (by IH)... $\sum_{i=0}^{k} i = \frac{k(k+1)}{2}$

We're trying to get...

 $\sum_{i=0}^{k+1} i = \frac{(k+1)(k+2)}{2}$

Our goal is to find a sub-expression of the left that looks like the left side of the IH.

Prove $3^n \ge n^2$ for all $n \ge 3$.

Let P(n) be " $3^n \ge n^2$ ". We go by induction on n. $3^3 = 3^7 \ge 7 = 3^3$ Base Case (n=3): $3^3 > 3^2 \le 3^7 \le$ Induction Hypothesis: Suppose the Claim is true for some n 23 Induction Step: We want to show Rever the chin for KHI Note that $\chi_{\lambda} \subset \Sigma$ We know (by IH)... V VUV We're trying to get... = (K+1)2 This is exactly P(k + 1). So, $P(k) \rightarrow P(k + 1)$.

So, the claim is true for all $n \ge 3$ by induction.

Strong Induction

 $\therefore \forall n P(n)$

Strong Induction English Proof

- **1.** By induction we will show that P(n) is true for every $n \ge 0$
- **2.** Base Case: Prove P(0)
- **3.** Inductive Hypothesis: Assume that for some arbitrary integer $k \ge 0$, P(j) is true for every j from 0 to k
- 4. Inductive Step: Prove that P(k + 1) is true using the Inductive Hypothesis (that P(j) is true for all values $\leq k$)
- 5. Conclusion: Result follows by induction

Every $n \ge 2$ can be expressed as a product of primes.

Let P(n) be " $n = p_0 p_1 \cdots p_i$, where p_0, p_1, \dots, p_i are prime." We go by strong induction on *n*. We go by strong induction on theBase Case (n=2):Induction Hypothesis: Suppose the days for all $k \neq k$ For some $K \geq a$ <u>Induction Step:</u> We go by cases. Case K is plane: We know (by IH)... CASE Kit COMPOSITE: K=ab for 50~6K>0,b>1 All numbers smaller than k can be expressed as a product of primes. We're trying to get... T1k can be expressed

as a product of primes.