
CS 13: Mathematical Foundations of Computer Science
Proof Techniques

What Is This?

Each of the following is as close as we can get to giving you a template (and a completely worked out example)
for every proof technique we will discuss this quarter.

However, there is a large WARNING associated with these templates! It might be tempting to memorize the
structure(s) of these templates rather than learn what they mean well enough to duplicate them on your own.
DON’T DO IT!!! These are meant as a way to help you ease into proof writing as we introduce more and
more complicated strategies. There isn’t (and will never be) an algorithm or formula for writing proofs.
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1 Direct Proofs

1.1 Technique Outlines

Proving a ∀ Statement
Prove ∀x P (x).

Let x be arbitrary.

Now, x represents an arbitrary element, and we
can just use it.

Prove P (x) by some other strategy.

Since x was arbitrary, the claim is true.

Prove ∀x (x = 5 ∨ x 6= 5).
Let x be arbitrary.

Note that by the law of excluded middle, x = 5
or x 6= 5.

Since x was arbitrary, the claim is true.

Proving an ∃ Statement
Prove ∃x P (x).

[Find an x for which P (x) is true. This is not actually
part of the proof, but it’s necessary to continue.]
Let x = expression that satisfies P (x) .

Now, explain why P (x) is true.

Since P (x) is true, the claim is true.

Prove ∃x Even(x).
[We can choose any even number here. We’ll go with
2, because it’s simplest.]
Let x = 2 .

Note that 2 is even, by definition, because 2×
1 = 2.

Since 2 is even, the claim is true.

Disproving a Statement
Disprove P (x).

We show that P (x) is false by proving its negation:
the negation of P (x) .

Prove ¬P (x) using some other proof strategy.

Since ¬P (x) is true, P (x) is false.

Disprove Odd(4).
We show that 4 is not odd by showing it’s even.

Note that 4 is even, by definition, because 2×
2 = 4.

Since 4 is even, it is not odd.
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1.2 Example

Prove ∀x ∀y ∃z (zx = y) Domain: Non-Zero Reals

Proof: Let x and y be arbitrary non-zero reals. Choose z =
y

x
. Note that x× y

x
= y. This is valid, because

x 6= 0. Thus, we’ve found a z (yx) such that the claim is true.

Commentary: We started off the proof with “Let x and y be arbitrary”. This is so that the claim works for
any x and y we are provided in the domain. We’re not allowed to assume anything special about x or y, but
if we use them as if they are any particular number, the claim will be true for any x and y.
The “choose” line is used to prove the existential quantifier by pointing out a value that works. We have to
follow that up with a justification of why the choice we made works.
The last line just sums up what we’ve done.
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2 Implication Proofs

2.1 Technique Outlines

Proving an =⇒ (Directly)
Prove A =⇒ B.

Suppose A is true.

Prove B using the additional assumption that
A is true.

It follows that B is true. Therefore, A =⇒ B.

Prove that if x ≤ 4 is an even, positive integer, then
it’s a power of two.

Suppose x ≤ 4 is even, positive integer.

Since x is a positive integer, x > 0. Further-
more, since x ≤ 4, it must be that x = 2 or
x = 4. Note that 2 = 21 and 4 = 22; so, both
possibilities are powers of two.

It follows that x must be a power of two. So, if x
is an even positive integer at most four, then x is a
power of two.

Proving an =⇒ (Contrapositive)
Prove A =⇒ B.

We go by contrapositive. Suppose ¬B is true.

Prove ¬A using the additional assumption
that ¬B is true.

So, ¬A is true. Therefore, A =⇒ B.

Prove that if x2 − 6x+ 9 6= 0, then x 6= 3.
We go by contrapositive. Suppose x = 3.

Then, x2 − 6x+ 9 = 32 − 6× 3 + 9 = 0.

So, x2 − 6x+ 9 = 0. Thus, if x2 − 6x+ 9 6= 0, then
x 6= 3.
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2.2 Examples

Prove ∀x ∀y ((x+ y = 1) =⇒ (xy = 0)) Domain: Non-negative Integers
Proof: Let x and y be arbitrary non-negative integers.

We prove the implication by contrapositive. Suppose xy 6= 0. Then, it must be the case that neither x nor
y is zero, because 0× a = 0 for any a. So, x > 0 and y > 0, which is the same as x ≥ 1 and y ≥ 1.

Adding inequalities together, we see that x+ y ≥ 2. It follows that x+ y > 1 which means x+ y 6= 1 which
is what we were trying to show.

So, the original claim is true.

Commentary: The hardest thing about proof by contrapositive is to understand when to use it. There are
two “clear” situations to try it in:

(1) If there are a lot of negations in the statement. (See the example above in the previous section.)
Contrapositive adds a bunch of negations into each part of the implication which means if there are
already a lot of them, it removes them!

(2) If you try the direct proof and get stuck (or feel like you have to use proof by contradiction). A very
common mistake is to use proof by contradiction when a proof by contrapositive would be much more
clear!

Prove ∀x ∀y ((x < y) =⇒ (∃z x < z ∧ z < y)) Domain: Rationals
Proof: Let x, y be arbitrary rational numbers such that x < y.

Since x, y are both rational, we have x =
px
qx

and y =
py
qy

for integers px, qx, py, qy such that qx 6= 0 and

qy 6= 0.

Note that x 6= y; so, it cannot be the case that px = py and qx = qy.

Define z =
pz
qz

=

px
qx

+
py
qy

2
=

pxqy
qxqy

+
pyqx
qxqy

2
=

pxqy + pyqx
2qxqy

.

First, note that pxqy + pyqx is an integer (because it’s a linear combination of integers). Second, note that
2qxqy is a non-zero integer, because qx, qy 6= 0.

Furthermore, note that pz
qz

is the average of x and y. Since x 6= y, the average must be larger than x and
less than y.

It follows that z is a rational number such that x < z < y , which is what we were trying to prove.
So, the implication is true, as is the entire statement.
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3 Set Proofs

3.1 Technique Outlines

Proving S = T

Prove S = T .
[If one of the sets has a complement in it, then make sure to define the universal set: U .]

Make incremental changes to the definition of the set via a series of equalities. The idea is to use the
theorems we have for logic to prove things about the sets.

Prove A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

A ∩ (B ∪ C) = {x : x ∈ (A ∩ (B ∪ C))} [By definition of containment]
= {x : x ∈ A ∧ x ∈ (B ∪ C)} [By definition of ∩]
= {x : x ∈ A ∧ (x ∈ B ∨ x ∈ C)} [By definition of ∪]
= {x : (x ∈ A ∧ x ∈ B) ∨ (x ∈ A ∧ x ∈ C)} [By distributivity of ∧,∨]
= {x : (x ∈ A ∩B) ∨ (x ∈ A ∩ C)} [By definition of ∩]
= {x : x ∈ ((A ∩B) ∪ (A ∩ C))} [By definition of ∪]
= (A ∩B) ∪ (A ∩ C) [By definition of containment]

Proving S ⊆ T

Prove S ⊆ T .
Suppose x ∈ S.

Use some other proof strategy to show that x ∈ T . Usually, this is a series of implications that looks
very much like proving S = T .

So, x ∈ T . Since all elements of S are also in T , it follows that S ⊆ T .
Prove A ∩ (B ∩ C) ⊆ A ∪ (B ∪ C).

Suppose x ∈ A ∩ (B ∩ C).

Then, by definition of intersection, x ∈ A, x ∈ B, and x ∈ C. Since x is contained in all three, we
also have x ∈ A ∨ (x ∈ B ∨ x ∈ C). So, by definition of union, we have x ∈ A ∪ (B ∪ C).

It follows that A ∩ (B ∩ C) ⊆ A ∪ (B ∪ C).
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Proving S = T

Prove S = T .
We prove that S ⊆ T and T ⊆ S to show that S = T .

Prove S ⊆ T .

Prove T ⊆ S.

Since S ⊆ T and T ⊆ S, S = T .

3.2 Example

Prove S = T

Let S = {x ∈ R : x2 > x+ 6} and T = {x ∈ R : x > 3 ∨ x < −2}.

Proof: To prove that S = T , we first prove that S ⊆ T , and then we prove that T ⊆ S.
Let x be an arbitrary element of S. Then, it follows that x ∈ R and x2 > x + 6. Using algebra, we can
simplify this inequality to x2 − x − 6 > 0. Factoring, we get (x − 3)(x + 2) > 0. Since (x − 3)(x + 2) is
positive, it must either be the case that both factors are positive or both factors are negative.

Case I (Both are positive): Then, we have x− 3 > 0 and x+ 2 > 0. Rearranging these equations, we see
that x > 3 and x > −2. It follows that in this case, x ∈ T , because x > 3.

Case II (Both are negative): Then, we have x − 3 < 0 and x + 2 < 0. Rearranging these equations, we
see that x < 3 and x < −2. It follows that in this case, x ∈ T , because x < −2.

Since in either case if x ∈ S, then x ∈ T , we have S ⊆ T .
Now, we prove that T ⊆ S. Let x ∈ T . Then, either x > 3 or x < −2. We take this in two cases:

Case I (x > 3): If x > 3, then x− 3 > 0 and x+ 2 > 0. It follows that (x− 3)(x+ 2) > 0, because both
factors are greater than 0. So, x ∈ S.

Case II (x < −2): If x < −2, then x + 2 < 0 and x − 3 < 0. It follows that (x − 3)(x + 2) > 0, because
both factors are less than 0. So, x ∈ S.

Since in either case if x ∈ T , then x ∈ S, we have T ⊆ S.
Since S ⊆ T and T ⊆ S, we have S = T , which is what we were trying to prove.
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4 Contradiction Proofs

4.1 Technique Outlines

Proving a Statement By Contradiction
Prove P .

Assume for the sake of contradiction that ¬P is true.

Prove Q and prove ¬Q for some Q by some
other strategy using ¬P as an assumption.

However, Q and ¬Q cannot both be true; so since
the only assumption we made was ¬P , it must be the
case that ¬P is false. Then, P is true.

Prove if a is a non-zero rational and b is irrational,
then ab is irrational.

Suppose a is rational (and non-zero) and b is irra-
tional. Now, assume for the sake of contradiction that
ab is rational.

By definition of rational, we have ab =
p

q
for

integers p, q, such that q 6= 0. Re-arranging
the equation, we have b =

p

aq
. (Note that this

is valid because a 6= 0.) Furthermore, we now
have integers p′ = p and q′ = aq where q′ 6= 0

(because a, q 6= 0.). So, it follows that b =
p′

q′

is rational!

However, we know that b can’t both be rational and
irrational; so, our assumption (ab is rational) must be
false. So, ab is irrational.

4.2 Example

Prove ∀x
(
(x > 0) =⇒

(
x+

1

x
≥ 2

))
Domain: Reals

Proof: Let x > 0 be arbitrary.
Suppose for contradiction that x+

1

x
< 2.

Then, multiplying both sides by x, we have (x2 + 1 < 2x) =⇒ (x2 − 2x + 1 < 0). Factoring gives us
(x − 1)2 < 0. However, every square must be at least zero; so, this is a contradiction. It follows that
x+

1

x
≥ 2, as claimed.
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5 Induction Proofs

5.1 Technique Outlines

Proving ∀(n ∈ N) P (n)

Prove ∀(n ∈ N) P (n).

Let P (n) be “ definition of P(n) here–this must have a truth value! ”.
We prove P (n) for all n ∈ N by induction on n.

Base Case:

Prove P (0) is true. This is often done by plugging in 0 and evaluating sides of
an (in)equality.

So, P (0) is true.

Induction Hypothesis:

Suppose P (k) is true for some k ∈ N.

Induction Step:

We want to show P (k + 1) is true.

Prove P (k + 1) is true using P (k) as an assumption. You must use the IH
(induction hypothesis) somewhere in this proof and cite it when you use it.

So, P (k) =⇒ P (k + 1) for all k ∈ N.

It follows that P (n) is true for all n ∈ N by induction.
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5.2 Example

Prove ∀(n ∈ N)
n∑

i=0

i =
n(n+ 1)

2

Let P (n) be “
n∑

i=0

i =
n(n+ 1)

2
”. We prove P (n) for all n ∈ N by induction on n.

Base Case:

Note that
0∑

i=0

i = 0 =
0(0 + 1)

2
.

So, P (0) is true.

Induction Hypothesis:

Suppose P (k) is true for some k ∈ N.

Induction Step:

We want to show P (k + 1) is true.

Note that:
k+1∑
i=0

i =

(
k∑

i=0

i

)
+ (k + 1) [Splitting the summation]

=

(
k(k + 1)

2

)
+ (k + 1) [By IH]

= (k + 1)

(
k

2
+ 1

)
[Factoring]

= (k + 1)

(
k + 2

2

)
[Multiplying by 1]

=
(k + 1)(k + 2)

2
[Algebra]

So, P (k) =⇒ P (k + 1) for all k ∈ N.

It follows that P (n) is true for all n ∈ N by induction.
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6 Strong Induction Proofs

6.1 Technique Outlines

Proving ∀(n ∈ N) P (n)

Prove ∀(n ∈ N) P (n).

Let P (n) be “ definition of P(n) here–this must have a truth value! ”.
We prove P (n) for all n ∈ N by strong induction on n.

Base Cases:

Prove P (0), P (1), . . . P (x) are true up to some specific small x ∈ N.

So, P (0), P (1), . . . , P (x) is true.

Induction Hypothesis:

Suppose P (k) is true for all 0 ≤ k ≤ ` for some ` ≥ x.

Induction Step:

We want to show P (`+ 1) is true.

Prove P (` + 1) is true using P (0), P (1), . . . P (`) as an assumption. You must
use the IH (induction hypothesis) somewhere in this proof and cite it when you
use it.

So, the strong induction step holds.

It follows that P (n) is true for all n ∈ N by induction.
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6.2 Example
Let

an =


1 if n = 0

1 if n = 1

2an−1 + 3an−2 if n ≥ 2

Prove an = 1
2
(3n − (−1)n+1) for n ∈ N

Let P(n) be the statement “an = 1
2(3

n − (−1)n+1)” for all n ∈ N. We prove P(n) by strong induction for
all n ∈ N.

Base Case:

Note that a0 = 1 = 1
2(3

0 − (−1)1) and a1 = 1 = 1
2(3

1 − (−1)2).

So, P (0) and P (1) are true.

Induction Hypothesis:

Suppose P (k) is true for all 0 ≤ k ≤ ` for some ` ≥ 1.

Induction Step:

We want to show P (`+ 1) is true.

By the definition of an (where n ≥ 2), we have: a`+1 = 2a` + 3a`−1. By our
IH, we have a` =

1
2(3

` − (−1)`+1) and a`−1 =
1
2(3

`−1 − (−1)`).
Substituting into a`+1, we see:

a`+1 = 2

(
1

2
(3` − (−1)`+1)

)
+ 3

(
1

2
(3`−1 − (−1)`)

)
= 3` − (−1)`+1 +

1

2

(
3` − 3(−1)`

)
=

1

2

(
2× 3` + 3` − 2(−1)`+1 − 3(−1)`

)
=

1

2

(
3`+1 − (−1)`+1(2− 3)

)
=

1

2

(
3`+1 − (−1)`+2

)
So, the strong induction step holds.

It follows that P (n) is true for all n ∈ N by induction.
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7 Structural Induction Proofs

7.1 Technique Outlines

Proving ∀(T ∈ Trees) P (T ) for Trees with elements from A

Prove that ∀(T ∈ Trees) P (T )

(the domain of trees is usually implicit in the problem and does not explicitly need to be stated)

Let P (T ) be “ definition of P (T ) here–this must have a truth value! ”.
We prove P (T ) for all T ∈ Trees by structural induction on T .

Base Case:

Prove P (Nil) is true (and possibly some other base cases if the claim you’re
proving has multiple base cases).

So, P (Nil), ... is true.

Induction Hypothesis:

Suppose P (L) and P (R) is true some trees L,R ∈ Trees.

Induction Step:

We want to show P (T ) is true for T = Tree(x, L,R) for all x ∈ A.

Prove P (T ) is true using P (L), P (R) as an assumption. You must use the IH
(induction hypothesis) somewhere in this proof and cite it when you use it.

So, the structural induction step holds.

It follows that P (T ) is true for all T ∈ Trees over A by induction.
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7.2 Example
Let

flip(Nil) = Nil

flip(Tree(x, L,R)) = Tree(x, flip(R), flip(L))

Prove flip(flip(T )) = T for T ∈ Trees over Z
For all T ∈ Trees, let P (T ) be the statement “flip(flip(T )) = T”. We prove P (T ) by structural induction
for all T ∈ Trees.

Base Case:

Note that by definition of flip, flip(flip(Nil)) = flip(Nil) = Nil.

So, P (Nil) is true.

Induction Hypothesis:

Suppose P (L) and P (R) are true for some L,R ∈ Trees.

Induction Step:

We want to show P (Tree(x, L,R)) is true for all x ∈ Z.

Observe that we have

flip(flip(Tree(x, L,R))) = flip(Tree(x, flip(R), flip(L))) [Def of flip]

= Tree(x, flip(flip(L)), flip(flip(R))) [Def of flip]

= Tree(x, L,R) [by IH]

So, the structural induction step holds.

It follows that P (T ) is true for all T ∈ Trees by induction.
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8 Graph Induction Proofs

8.1 Technique Outlines

Proving ∀(G ∈ Graphs) P (G)

Prove that ∀(G ∈ Graphs) P (G)

Let P (G) be “ definition of P (G) here–this must have a truth value! ”.
We prove P (G) by graph induction for all G ∈ Graphs.

Base Case:

Prove P ((∅,∅)) is true. (This is a graph with no vertices and no edges.) You
may possibly want to prove some other base cases if the claim you’re proving has
multiple base cases.

So, P ((∅,∅)), ... is true.

Induction Hypothesis:

Suppose P (G) is true for all G = (V,E) ∈ Graphs which have |V | = n, for some n ∈ N.
(These are all graphs with n vertices.)

Induction Step:

We want to show P (G) is true for G = (V,E) ∈ Graphs which has |V | = n+ 1.

Construct G′ = (V ′, E′), a reduced version of G with one fewer vertex, i.e.:
|V ′| = |V | − 1 = n. (You should provide the method for constructing G′. You
will likely want G′ to have specific, useful properties; if so, you should prove that
it is always possible to construct a G′ with those properties.)

Since G′ has |V ′| = n, by the induction hypothesis, P (G′) is true. You must
use the IH as an assumption in this proof and cite it when you use it.

Now, return from G′ to G. Ideally, you selected G′ such that P (G′) now provides
useful information about G. Using P (G′), prove that P (G) holds.

So, the induction step holds.

It follows that P (G) is true for all G ∈ Graphs by induction.
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8.2 Example

Prove that for all graphs G = (V,E), if maxv∈V d(v) = k then G is k + 1-colorable
For all G ∈ Graphs where G = (V,E), let P (G) be the statement “if maxv∈V d(v) = k then G is k + 1-
colorable”. We prove P (G) by graph induction for all G ∈ Graphs.

Base Case:

Let G = (∅,∅). There are no vertices, so maximum degree is 0 and G can be colored in 1
color.
Let G = (V,E) with |V | = 1 and arbitrary E. One vertex always has degree 0 and can be
colored in 1 color.

So, P (G = (V,E)) is true when |V | = 0 and |V | = 1.

Induction Hypothesis:

Suppose P (G) is true for all G = (V,E) ∈ Graphs which have |V | = n, for some n ∈ N.

Induction Step:

We want to show P (G) is true for G = (V,E) ∈ Graphs which has |V | = n+ 1.

Assume maxv∈V d(v) = k.

Let w ∈ V be a vertex with d(w) = k. Let G′ = (V ′, E′) be G with w removed. (That is,
V ′ = V \ {w}, E′ = {e ∈ E : w /∈ e}.) This means |V ′| = n. Let k′ = maxv∈V ′ d(v) ≤ k.

By the induction hypothesis, G′ is k′ + 1-colorable. Since k′ ≤ k, G′ is k + 1-colorable.

Add w and its edges back to G′. The new edges are {e ∈ E : w ∈ e}. Since d(w) = k,
there are k such edges, and w has k neighbors. Those neighbors have at most k distinct
colors between them, so one of the k + 1 colors can be used for w.

The resulting graph is G and k + 1-colorable.

So, the induction step holds.

It follows that P (G) is true for all G ∈ Graphs by induction.
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