CS 13: Mathematical Foundations of Computer Science Fall 2023
Classification: Application 02 (due November 19th)

Directions: Write up carefully argued solutions to the following problems. Your solution should be clear
enough that it should explain to someone who does not already understand the answer why it works. You may
use results from lecture and previous homeworks without proof. Your solutions must be written in BTEX using
our homework template. No solution to a single part may be more than one page.

A common machine learning problem we encounter is wanting to classify documents of words into different
categories. It would be great, for example, to be able to classify an email as “spam” without reading it, or
classify a tweet's emotion instantly. This is exactly what the Naive Bayes algorithm allows us to do!

0. Deriving Naive Bayes (10 points)

Naive Bayes is what is called a "bag of words" approach, which reduces a document to just a set of words
(meaning that we are completely ignoring the order of the words) and works with that. This seems like it loses
the majority of the information—and it does—but it turns out to work decently well despite this.

Let's say we have a document with n distinct words, which we enumerate arbitrarily as W = {w; }?= (note that
this is not necessarily the order of the words in the document). We can imagine that the document (defined for
our purposes by the set W) was pulled from some ideal distribution of documents, and let Byorq be the event
that a document pulled from this distribution contains word. Let A be the event that our document is spam.
In order to classify our document as spam or not spam, we want to find Pr(A | B), where

n—1
B= () Bu,
=0

is the event that a document drawn from the distribution of documents contains all of the words W .

Applying Bayes' Theorem gives us
Pr(B | A)Pr(A)

Pr(A| B) =
(A1 B) Pr(B)
Note that since Pr(B) is a scaling factor, we will omit it from our calculations (your job in this part is to justify
why).
Thus,

Pr(A | B) o Pr(B | A) Pr(A)

In Bayesian statistics, the right hand side of this expression is called the “likelihood” of A given B.

Making the additional (naive) assumption that the By,'s are conditionally independent with respect to A, which
means that for each 0 <4, j < n, whenever i # j we have Pr(By, N By, | A) = Pr(By, | A)Pr(B,, | A), we
get:

n—1 n—1
Pr<ﬂ Bu, | A) = [[ Pr(Bu, | 4)
i=0 i=0
Plugging this into our previous equation gives:

Pr(A| B) (HPr w|A> r(A)

In Naive Bayes classification, we estimate the probabilities Pr(B,, | A) and Pr(A) relative to a corpus of
documents which have already been labeled with categories C1,...,C; — in our case, we only have kK = 2



categories, spam (C7 = A) and ham (that is, not spam, or in other words, Cy = A, the complement of A). By

taking the category C; with the largest likelihood, we can give our document a single, most likely classification.

(a) [10 Points] Explain why just a proportional likelihood value suffices for classification purposes and we
don't need to calculate the actual value of Pr(A | B).

1. Uh Oh! Underflow! (70 points)

Imagine we have 150 documents, all spam, each of a single distinct word. Then, Pr(B,, | A) =
So,

1
150°

1 150
Pr(A|B) « | — | x 1~ 2.5923E-326
150

Unfortunately, Python helpfully tells us that this quantity is zero:

>>> (1/150)*x150
0.0

It turns out, real numbers are not stored exactly on computers. Instead, computers use a system called “floating
point numbers” which is a standardized approximation of the real numbers and used everywhere. At a high
level, floating point numbers are basically a binary version of scientific notation.

To fix this underflow problem, we're going to be taking the log of the probabilities and using those instead, like
So:

Pr(4| B) « (HPr w1’A> A)
logPr(A | B) log((HPr w|A> ())

= (Z log(Pr(Bu, |A))> + log(Pr(A))
i=0
But, we'd like a justification for why this works. So, we'll delve into floating point a little bit.
doubles are stored in 64 bits, broken up into three parts:
= s: the sign (first bit)
» e: the exponent (next 11 bits)
» f =bs1b50---bp: the fraction (final 52 bits)

exponent fraction
sign (11 bit) (52 bit)

I I |
(e] (@]

(@]
52

To calculate the value of a floating point number, we use the following rules:

» If e #0 and e # 0x7£f (all 1s), we say the number is “normal” and use the following formula:

(—1)8 x 2671023 o (1.651550 e b0)2

52
(_1)3 % 26—1023 % (1 + Zb52—i2_i>

=1



» If e=0and f =0, then the number represented is +0 or -0

» If e=0 and f # 0, we say the number is “subnormal” and we use an alternate formula:

(—1)8 X 271022 X (O.b51b50 cee bo)g
= If e = 0x7£f, then the number represented is NaN or an infinity.

(a) [10 Points] Use Python to determine the smallest representable floating point number greater than 0.
(Hint: Use powers of two.)

(b) [10 Points| Prove that floating-point addition is not associative. That is, prove there exist x,y, z such
that (z +vy) + z # x + (y + z) when + is floating point addition.

(c) [5 Points] What is the smallest normal value greater than 07

(d) [10 Points] How many values (both normal and subnormal) can be represented in the range (0,1) (exclu-
sive)?

(e) [10 Points] How many values can be represented in the range (—o0, 0) (exclusive of —oo and 0)?

(f) [15 Points] Prove that In(x) is an increasing function. You may assume the mean value theorem and that
Inz is continuous and differentiable in its entire domain, with a derivative of % However, you may not
use any other theorems from calculus.

(g) [5 Points] Explain without proof why (d) and (e) together show that the number of probabilities we can
represent increases when we take the log.

(h) [5 Points] Explain why it's necessary for log to be monotonic for this transformation to be valid.

Because taking the log greatly increases our space of representable probabilities, and turns hard-to-compute
multiplications into easy-to-compute additions, it is often used in machine learning algorithms such as Naive
Bayes!

2. Implement Naive Bayes (20 points)
In this part, you will implement Naive Bayes as described above to classify some documents and tweets into
different categories.

Laplace Smoothing

One final “gotcha” you will encounter is when you are processing words in the classification files that aren't
present in the training set. We use Laplace Smoothing to fix this issue.

In essence, to ensure that each word in the document appears at least once as each category, we add a phantom
document for each word in the document which contains just that word and belongs to the category. Do not
actually add documents!

Instead, for each word, when calculating Pr(B,, | A) you should add 1 to the numerator (since there is one
more phantom document containing the word in the category) and n in the denominator (since there are n
more phantom documents total in the category).

This will prevent us getting a division-by-zero error in this special case.

The Data

In this problem, we provide you two distinct data sets to practice training on. They are “emails” and “tweets”,
respectively.


https://en.wikipedia.org/wiki/Mean_value_theorem

The Code

You are responsible for filling in the probability/likelihood calculations in the code. We've handled everything
else for you. Note that these functions are the core of Naive Bayes as they correspond directly to the quantities
in the formula.

When you clone or download the starter repository, you will find several files inside. While you are welcome to
look around if you are curious, the only file you will submit, and thus the only file you should edit, is
bayes.py.

The driver code in main.py will call the train function on the data set and then the predict function on
each document. The assignment can be completed by editing only pr_category, pr_word_given_category,
and log_likelihood_category_given_words, but you are allowed to edit or create others if you wish.

Our reference solution adds less than twenty lines to the starter code, though a solution which includes more
may well be correct.

Grading

We will check your classifications against the provided classifications given in the “validate” files. Here are our
results for the two data sets we've given you:

tweets__validate
correctly classed as:
negative: 1166
positive: 780
incorrectly classed as:
positive: 420
negative: 216

emails_validate
correctly classed as:
spam: 145

ham: 326

incorrectly classed as:
spam: 0

ham: 29

You should expect something roughly similar to these results. We will also be running your code on a private
test file, so these results alone are not enough to guarantee full credit.



