CS 13: Mathematical Foundations of Computer Science Fall 2023
Compression: Application 01 (due Monday, November 6)

Directions: Write up carefully argued solutions to the following problems. Your solution should be clear
enough that it should explain to someone who does not already understand the answer why it works. You may
use results from lecture and previous homeworks without proof. Your solutions must be written in BTEX using
our homework template. No solution to a single part may be more than one page.

0. Decompressing Huffman Codes (25 points)

Retrieve the original text by writing a program to decode the following text compressed using Huffman Codes:

dict: {"00"=32,"01000"=100,"010010"=109,"010011"=119,"0101"=97,"01100"=46,"0
11010"=44,"01101100"=84,"011011010"=83,"011011011"=48,"0110111"=73,"01
11"=111,"10000"=104,"10001"=115,"10010"=110,"1001100"=33,"100110100"=7
6,"100110101"=122,"10011011"=65,"100111"=99,"10100"=108,"10101"=105,"1
011"=101,"11000"=114,"110010000"=79,"1100100010"=113,"1100100011"=78,"
11001001"=72,"11001010"=63,"11001011000"=56,"11001011001"=68,"11001011
010"=69,"11001011011"=85,"11001011100"=86,"11001011101"=120,"110010111
10"=70,"11001011111"=77,"1100110"=39,"1100111"=112,"110100"=103,"11010
100"=89,"1101010100"=49,"1101010101"=106,"110101011"=87,"1101011"=98,"
110110"=121,"1101110"=107,"1101111"=102,"1110"=10,"11110"=116,"111110"
=117,"11111100"=118,"11111101"=66,"1111111"=45}

msg: 9b9e77c22b2d0£f38b4albade9c8a2a7le7de2fe557d57935dc1de85e2cac49389aec29
aeefa307fa8835d8bae9679cdf4d99dclcdfd113acb488b8b3ceed525a50f£39abfbabe
89bd7c52bef52cd6e8d87dfbcf42cd30££490cee0e6c859aeedalf793bfd88db46fab6
e22cb64d76ee0ed773afd1b35ddc443cb3789d717c9c17c43e496513d0acb7158954b3
bc635d74b677076a5d28e9b46ba2cfb986a5d28e9b46ba2cfb99da974a3a6dlae8b3ee
61a974a3a6d1ae8b3ee67707641e0d1ae8b3ee164836bab1d399d34bf6689182eeb2be
3ece294afbd4b677077eae31b4c3f716bbb7ac7c56262d51b4cee0ec83a5596933b83b
2565a0£2148dcef2433b83b26e947caeeclefe7eae31b6577£26d0a96577077£320b236
7£8d774adfeb59e85625624173e7b9565a6577f1b93acb379837cd4al19eb3ee367£8fb3
b3b83a68efbab2d08c1719d9dc1d96e367a1647cb5c4586a3fd837afal78eceb541a3b
a049e57b1bdf07a0f1b67707369£18d9837cc9179767afad0ceelec9bc5e689e859a61
51f2fad9dabbcd8b3f2f1b19f0f£207debcff3445ed4cee0e9b33de37dcfe3179df1e27
5c21a16943£73459dc1d972£1b19f0££219dc1d97d660dcd1fc29e8565a1a3d65a10bc
5b3b83bf9a8ff1a3f8ab65ele46cff60dff4d66acefe64139836417d9a225733b83bf9
abbfcb3ce7d1986aef35286bb2b230e99aaba9961a6dbb6dbb6cefe7eed733b83bf5718d
9a1b9e7a20d9febba3de7ce6fab6d59685647a1641fe8dcceelefeb64decd13685499dfcc
9bd9a3£f5718d99dc1dfc6f13d05f1bfe9acd4d2e995dfcO9b295f7a96c1bb59ee7aad042
ecd1a6151f2faaf2677076477£9783d07£b48786£99024bbacaf99dc1cd90c5d885da2
698545919e0ef46bbd0c5d885da242bad08cf077a33b839b20f1b13bc58a9ee4d70867
70736431762176893bd297a5b06£99234a2a06e79df772885d85920857d3¢c215dd6817
0£f£4907a1642bf96cee0ed47£845504e€959ad67dc22bbf7de2e5e677077£326ad1fab
8cbccefedde3dbb68d30e9d65a0a25£47cb3c2f289a3bee89a3bal9dcldfccObbcObad
fef197b0b2ddbbcaefe6abac19dc1dfcd47£8d1eb2d0£39e859bfe95e16995dfcc8dda
1be64893f8d1eb2d19dc1d96bf2f1b6b746c6e93a716ba3deachb422e95bcadal367£8456
d9dc1d965e59bc26b1£595£0£2148e45f5718ba339b5f4£01483fa16a8677073734fae
312164ef£510417£2fbb5fa3e347f7ae43fdel1f79e8589aecceelebeb1ff2cf42b12b2
9df19dfObeacb4e590a97d1b4aebe33ae3715979c7£b021766770736417d9a2270d84e
c43cb37895da0fc59d7d579459dc1dfafb34645f57d629aebelf799dd2cec633be922f
07a164f5c4££f251£2ca7b8b3b83bf%abbab1a26d0a93479d0bb09d8b8b12b933bf9abb
171733b83bf9fb77£d2b933b£93695cab6770764ad2974fb55584cee

1. Lempel-Ziv: A Whole New Game (75 points)

Lempel-Ziv is a family of compression algorithms that attempt to compress a string by finding repeated “phrases”.
For example, aaaaaaaaaaaaa and abcabcabcabc should be highly compressible.

In this problem, we will deal with a slightly simplified LZ algorithm which splits a string into phrases greedily.
The algorithm repeatedly chunks the input into phrases by splitting at the smallest prefix it hasn't already seen.
For example, for the string AABABBBABAABABBBABBABB, LZ would first find A, then AB, then ABB, etc. This

would result in a string split into phrases as follows:
A|AB|ABB|B|ABA|ABAB|BB|ABBA|BB

As we split the string, we number the phrases we've found: {A = 1,AB =2,...}. Then, to output a compressed
version of the string we replace the repeats with their numbers (written in decimal here, but in encoding, they'd
be in binary):

A|AB|ABB|B|ABA|ABAB|BB|ABBA|BB
Al1BI2B |BI2A |5B [|4BI3A |7

(a) [10 Points] Explain in your own words how you might combine Huffman Coding with LZ. Why might
combining Huffman Coding with LZ lead to better compression?

A Phrase Repeated
We call an individual code that LZ outputs a “phrase”.

(b) [10 Points]

Imagine we compress some string of length n using LZ. Find a string which minimizes the number of
phrases the output could have, express the number of phrases in terms of n, and prove it is minimal.

Compression Cannot Be Perfect

(c) [10 Points] Fix an arbitrary alphabet ¥ with |X| > 2 and an arbitrary compression scheme. Prove that it
is not possible to compress all strings of length n.

That is, prove that no compression scheme can make every string shrink in length.

LZ Worst-Case

By the previous part, it follows that we should consider a compression scheme to be “good” if the worst case
string doesn’t expand “too much”. In other words, since some strings have to grow for others to shrink, we
want to find a limit to how bad the most expanded string is.

Suppose, for simplicity, that ¥ = {0,1}.

Throughout, you may assume an explicit finite lower bound (like 3 or 10, or even 1000 if you want) on k (defined
below), if it helps.

(d) [5 Points] Consider the set of strings where the length of the largest phrase generated by LZ is k. Find
the string, Sk, in this set that maximizes the number of phrases LZ will use.

(e) [5 Points] Prove that |Si| = (k — 1)2F+1 4- 2.

(f) [5 Points] Let ¢(X) be the number of phrases X is parsed into. Show that ¢(S;,) = 2F+1 — 2.

Sk

(g) [5 Points] Assume k > 1. Prove that ¢(Sy) < — using the two previous parts.

Let @ be an arbitrary string of length n. Let k be the largest natural number such that |S;| < n.

(h) [5 Points] The maximum possible value of ¢(Q) will occur when @ starts with Sy and finishes with some

A
string A to pad to n. Let this worst case string be W. Prove that ¢(A) < l<:|+|1

(i) [10 Points] Show that lgc(@) < k + 2. Use this together with the previous two parts to prove that
n
Q)< ————.
D= @)
(j) [5 Points] Explain why the largest number of bits @ can be compressed to by LZ is ¢(Q)1g(c(Q)) + ¢(Q)
(k) [5 Points] Finally, conclude that the largest number of bits that () can be compressed into is n + 6%

for some natural number /.

